OFFSET
1,2
COMMENTS
Multiply-perfect numbers of the form 2^(k - 1) * (2^k - 1) that can be written as sum of the first h natural numbers for some h.
Corresponding values of numbers k and h: (1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 31, 61, 89, 107, 127, ...), (1, 3, 7, 15, 31, 127, 1023, 8191, 131071, 524287, 2147483647, ...), where h = 2^k - 1. Conjecture: numbers h are numbers from A066175 (sigma(phi(sigma(h))) = h).
Corresponding values of abundancies sigma(a(n)) / a(n): 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, ...
Conjecture: union of even perfect numbers from A000396 and 3-perfect numbers 120 and 523776.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..15
PROG
(Magma) [(2^k - 1) * (2^(k - 1)): k in [1..200] | IsIntegral(SumOfDivisors((2^k - 1) * (2^(k - 1)))/( (2^k - 1) * (2^(k - 1))))]
(PARI) isok(k) = ispolygonal(k, 3) && (denominator(sigma(k)/k) == 1); \\ Michel Marcus, Dec 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 17 2019
STATUS
approved