Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 27 2023 16:41:43
%S 7,30,124,504,2032,8160,32704,130944,524032,2096640,8387584,33552384,
%T 134213632,536862720,2147467264,8589901824,34359672832,137438822400,
%U 549755551744,2199022731264,8796091973632,35184369991680
%N a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 7, a(1) = 30.
%C Related to Reverse and Add trajectory of 22 in base 2: A061561(4*n+2) = 12*a(n).
%C Third binomial transform of A010729.
%C a(n) in base 2 is n+3 1s followed by n 0s. - _Hussam al-Homsi_, Oct 12 2021
%H Vincenzo Librandi, <a href="/A171472/b171472.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-8).
%F a(n) = 8*4^n-2^n.
%F G.f.: (7-12*x)/((1-2*x)*(1-4*x)).
%F a(n) = A171499(n+1)/2. - _Hussam al-Homsi_, Jun 06 2021
%F E.g.f.: exp(2*x)*(8*exp(2*x) - 1). - _Stefano Spezia_, Sep 27 2023
%t LinearRecurrence[{6,-8},{7,30},30] (* _Harvey P. Dale_, Sep 01 2016 *)
%o (PARI) {m=22; v=concat([7, 30], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
%o (Magma) [8*4^n-2^n: n in [0..30]]; // _Vincenzo Librandi_, May 31 2011
%Y Cf. A061561, A010729 (repeat 7, 9), A171470, A171471, A171473, A171499.
%K nonn,easy
%O 0,1
%A _Klaus Brockhaus_, Dec 09 2009