login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171475
a(n) = 6*a(n-1) - 8*a(n-2), for n > 2, with a(0) = 1, a(1) = 6, a(2) = 27.
1
1, 6, 27, 114, 468, 1896, 7632, 30624, 122688, 491136, 1965312, 7862784, 31454208, 125822976, 503304192, 2013241344, 8053014528, 32212156416, 128848822272, 515395682304, 2061583515648, 8246335635456, 32985345687552
OFFSET
0,2
COMMENTS
Binomial transform of A037480; second binomial transform of A133600.
First differences of A080960.
FORMULA
a(n) = 3*(5*4^n - 2*2^n)/8 for n > 0.
G.f.: (1-x)*(1+x)/((1-2*x)*(1-4*x)).
E.g.f.: (1/8)*(-1 - 6*exp(2*x) + 15*exp(4*x)). - G. C. Greubel, Dec 02 2021
MATHEMATICA
Table[If[n==0, 1, 3*(5*4^n - 2*2^n)/8], {n, 0, 30}] (* G. C. Greubel, Dec 02 2021 *)
LinearRecurrence[{6, -8}, {1, 6, 27}, 30] (* Harvey P. Dale, Oct 25 2023 *)
PROG
(PARI) {m=21; v=concat([1, 6, 27], vector(m-3)); for(n=4, m, v[n]=6*v[n-1]-8*v[n-2]); v}
(Magma) I:=[6, 27]; [1] cat [n le 2 select I[n] else 6*Self(n-1) - 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 02 2021
(Sage) [1]+[3*(5*4^n - 2*2^n)/8 for n in (1..30)] # G. C. Greubel, Dec 02 2021
CROSSREFS
Cf. A037480 ((5*3^n +(-1)^n -6)/8), A133600 (row sums of triangle A133599), A080960 (third binomial transform of A010685).
Sequence in context: A176476 A079742 A291232 * A130019 A196919 A049651
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 09 2009
STATUS
approved