login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081625
a(n) = 2*5^n - 3^n.
6
1, 7, 41, 223, 1169, 6007, 30521, 154063, 774689, 3886567, 19472201, 97479103, 487749809, 2439811927, 12202248281, 61020807343, 305132734529, 1525749766087, 7629007110761, 38145810394783, 190731376496849
OFFSET
0,2
COMMENTS
Binomial transform of A016516. Inverse binomial transform of A081626.
Row sums of the triangle of 2^n terms shown in A178590 appears to = A081625. - Gary W. Adamson, May 29 2010
Binomial transform of A006516: (1, 6, 28, 120, 496, ...). - Gary W. Adamson, May 31 2010
FORMULA
a(n) = 8*a(n-1) - 15*a(n-2), a(0)=1, a(1)=7.
G.f.: (1-x)/((1-3*x)(1-5*x)).
E.g.f. 2*exp(5*x) - exp(3*x).
a(n) = Sum_{k=0..n} A125185(n,k)*3^k. - Philippe Deléham, Feb 26 2012
MATHEMATICA
CoefficientList[Series[(1 - x) / ((1 - 3 x) (1 - 5 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)
LinearRecurrence[{8, -15}, {1, 7}, 30] (* Harvey P. Dale, Oct 14 2013 *)
PROG
(Magma) [2*5^n-3^n: n in [0..25]]; // Vincenzo Librandi, Aug 09 2013
CROSSREFS
Sequence in context: A168584 A191010 A239041 * A144635 A097165 A152268
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 25 2003
STATUS
approved