OFFSET
0,2
COMMENTS
Row sums of the triangle of 2^n terms shown in A178590 appears to = A081625. - Gary W. Adamson, May 29 2010
Binomial transform of A006516: (1, 6, 28, 120, 496, ...). - Gary W. Adamson, May 31 2010
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-15).
FORMULA
a(n) = 8*a(n-1) - 15*a(n-2), a(0)=1, a(1)=7.
G.f.: (1-x)/((1-3*x)(1-5*x)).
E.g.f. 2*exp(5*x) - exp(3*x).
a(n) = Sum_{k=0..n} A125185(n,k)*3^k. - Philippe Deléham, Feb 26 2012
MATHEMATICA
CoefficientList[Series[(1 - x) / ((1 - 3 x) (1 - 5 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)
LinearRecurrence[{8, -15}, {1, 7}, 30] (* Harvey P. Dale, Oct 14 2013 *)
PROG
(Magma) [2*5^n-3^n: n in [0..25]]; // Vincenzo Librandi, Aug 09 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 25 2003
STATUS
approved