login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081623
Number of ways in which the points on an n X n square lattice can be equally occupied with spin "up" and spin "down" particles. If n is odd, we arbitrarily take the lattice to contain one more spin "up" particle than the number of spin "down" particles.
1
1, 1, 6, 126, 12870, 5200300, 9075135300, 63205303218876, 1832624140942590534, 212392290424395860814420, 100891344545564193334812497256, 191645966716130525165099506263706416, 1480212998448786189993816895482588794876100
OFFSET
0,3
LINKS
Brian Hayes, The World in a Spin, American Scientist 88:5 (September-October 2000), pp. 384-388. [alternate link]
Noah Lordi, Maedee Trank-Greene, Akira Kyle, and Joshua Combes, Quantum permutation puzzles with indistinguishable particles, arXiv:2410.22287 [quant-ph], 2024. See p. 8.
FORMULA
a(n) = C(n^2, (n^2+1)/2) if n is odd and C(n^2, n^2/2) if n is even.
a(n) = binomial(n^2,floor(n^2/2)). - Alois P. Heinz, Jul 21 2017
EXAMPLE
a(2) = C(4,2) = 6.
a(3) = C(9,5) = 126.
MAPLE
a:= n-> (s-> binomial(s, floor(s/2)))(n^2):
seq(a(n), n=0..15); # Alois P. Heinz, Jul 21 2017
PROG
(Mathcad or Microsoft Excel): f(n)=combin(n^2, trunc((n^2+1)/2))
(PARI) a(n)=binomial(n^2, n^2\2) \\ Charles R Greathouse IV, May 09 2013
CROSSREFS
A082963 is the equivalent sequence up to reflection and rotation.
Sequence in context: A237428 A255900 A133792 * A223210 A324093 A177756
KEYWORD
easy,nonn
AUTHOR
A. Timothy Royappa, Apr 22 2003
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jul 21 2017
STATUS
approved