login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways in which the points on an n X n square lattice can be equally occupied with spin "up" and spin "down" particles. If n is odd, we arbitrarily take the lattice to contain one more spin "up" particle than the number of spin "down" particles.
1

%I #20 Nov 05 2024 10:45:08

%S 1,1,6,126,12870,5200300,9075135300,63205303218876,

%T 1832624140942590534,212392290424395860814420,

%U 100891344545564193334812497256,191645966716130525165099506263706416,1480212998448786189993816895482588794876100

%N Number of ways in which the points on an n X n square lattice can be equally occupied with spin "up" and spin "down" particles. If n is odd, we arbitrarily take the lattice to contain one more spin "up" particle than the number of spin "down" particles.

%H Alois P. Heinz, <a href="/A081623/b081623.txt">Table of n, a(n) for n = 0..57</a>

%H Brian Hayes, <a href="http://bit-player.org/wp-content/extras/bph-publications/AmSci-2000-09-Hayes-Ising.pdf">The World in a Spin</a>, American Scientist 88:5 (September-October 2000), pp. 384-388. [<a href="http://www.americanscientist.org/issues/pub/the-world-in-a-spin">alternate link</a>]

%H James Grime, <a href="http://www.youtube.com/watch?v=wdDF7_vfLcE">Maths Problem: Complete Noughts and Crosses (Burnside's Lemma)</a>

%H Noah Lordi, Maedee Trank-Greene, Akira Kyle, and Joshua Combes, <a href="https://arxiv.org/abs/2410.22287">Quantum permutation puzzles with indistinguishable particles</a>, arXiv:2410.22287 [quant-ph], 2024. See p. 8.

%F a(n) = C(n^2, (n^2+1)/2) if n is odd and C(n^2, n^2/2) if n is even.

%F a(n) = binomial(n^2,floor(n^2/2)). - _Alois P. Heinz_, Jul 21 2017

%e a(2) = C(4,2) = 6.

%e a(3) = C(9,5) = 126.

%p a:= n-> (s-> binomial(s, floor(s/2)))(n^2):

%p seq(a(n), n=0..15); # _Alois P. Heinz_, Jul 21 2017

%o (Mathcad or Microsoft Excel): f(n)=combin(n^2,trunc((n^2+1)/2))

%o (PARI) a(n)=binomial(n^2,n^2\2) \\ _Charles R Greathouse IV_, May 09 2013

%Y A082963 is the equivalent sequence up to reflection and rotation.

%K easy,nonn

%O 0,3

%A _A. Timothy Royappa_, Apr 22 2003

%E a(0)=1 prepended by _Alois P. Heinz_, Jul 21 2017