login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177756
Number of ways to place 3 nonattacking bishops on an n X n toroidal board.
6
0, 0, 6, 128, 600, 2688, 7350, 19968, 42336, 89600, 163350, 297600, 490776, 809088, 1242150, 1906688, 2774400, 4036608, 5633766, 7862400, 10613400, 14326400, 18818646, 24718848, 31740000
OFFSET
1,3
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
Index entries for linear recurrences with constant coefficients, signature (2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1).
FORMULA
Explicit formula: 1/12*(n-2)^2*n^2*(2*n^2-4*n+5+3(-1)^n).
G.f.: -2*x^3*(3*x^8+58*x^7+160*x^6+518*x^5+442*x^4+518*x^3+160*x^2+58*x+3)/((x-1)^7*(x+1)^5).
MATHEMATICA
CoefficientList[Series[- 2 x^2 * (3 x^8 + 58 x^7 + 160 x^6 + 518 x^5 + 442 x^4 + 518 x^3 + 160 x^2 + 58 x + 3)/((x - 1)^7 * (x + 1) ^5), {x, 0, 1 50}], x] (* Vincenzo Librandi, May 31 2013 *)
LinearRecurrence[{2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1}, {0, 0, 6, 128, 600, 2688, 7350, 19968, 42336, 89600, 163350, 297600}, 30] (* Harvey P. Dale, Aug 31 2024 *)
CROSSREFS
Sequence in context: A081623 A223210 A324093 * A089314 A111873 A348796
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 13 2010
STATUS
approved