login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172124
Number of ways to place 3 nonattacking bishops on an n X n board.
16
0, 0, 26, 232, 1124, 3896, 10894, 26192, 56296, 110960, 204130, 355000, 589196, 940072, 1450134, 2172576, 3172944, 4530912, 6342186, 8720520, 11799860, 15736600, 20711966, 26934512, 34642744, 44107856, 55636594, 69574232
OFFSET
1,3
REFERENCES
E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63
LINKS
Christopher R. H. Hanusa, T. Zaslavsky, and S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
FORMULA
Explicit formulas (Karl Fabel, 1966): (Start)
a(n) = n*(n-2)*(2*n^4 - 4*n^3 + 7*n^2 - 6*n + 4)/12 if n is even.
a(n) = (n-1)*(2*n^5 - 6*n^4 + 9*n^3 - 11*n^2 + 5*n - 3)/12 if n is odd. (End)
G.f.: 2*x^3*(13+38*x+48*x^2+18*x^3+3*x^4)/((1-x)^7*(1+x)). - .Vaclav Kotesovec, Mar 25 2010
a(n) = (2*(n-2)*n*(2*n^4-4*n^3+7*n^2-6*n+4)-3*(-1)^n+3)/24. - Bruno Berselli, May 26 2013
E.g.f.: (1/24)*( (3 - 6*x + 6*x^2 + 100*x^3 + 130*x^4 + 44*x^5 + 4*x^6)*exp(x) - 3*exp(-x) ). - G. C. Greubel, Apr 16 2022
MATHEMATICA
CoefficientList[Series[2x^2(3x^4 +18x^3 +48x^2 +38x +13)/((1-x)^7 (x+1)), {x, 0, 30}], x] (* Vincenzo Librandi, May 26 2013 *)
PROG
(Magma) [(n*(n-2)*(2*n^4 -4*n^3 +7*n^2 -6*n +4) +3*(n mod 2))/12: n in [1..40]]; // G. C. Greubel, Apr 16 2022
(SageMath) [(n*(n-2)*(2*n^4 -4*n^3 +7*n^2 -6*n +4) +3*(n%2))/12 for n in (1..40)] # G. C. Greubel, Apr 16 2022
CROSSREFS
Sequence in context: A159519 A110486 A098994 * A196633 A196638 A163726
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 26 2010
STATUS
approved