login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172127
Number of ways to place 4 nonattacking bishops on an n X n board.
14
0, 0, 8, 260, 2728, 16428, 70792, 242856, 706048, 1809464, 4199064, 8992684, 18024072, 34170724, 61784632, 107243472, 179645376, 291667440, 460615272, 709686228, 1069477928, 1579767068, 2291594536, 3269684088, 4595235136
OFFSET
1,3
REFERENCES
E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63
LINKS
Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv:1609.00853 [math.CO], 2016.
Index entries for linear recurrences with constant coefficients, signature (6, -12, 2, 27, -36, 0, 36, -27, -2, 12, -6, 1).
FORMULA
Explicit formula (Karl Fabel, 1966): a(n) = n(n - 2)(15n^6 - 90n^5 + 260n^4 - 524n^3 + 727n^2 - 646n + 348)/360 if n is even and a(n) = (n - 1)(n - 2)(15n^6 - 75n^5 + 185n^4 - 339n^3 + 388n^2 - 258n + 180)/360 if n is odd.
G.f.: 4*x^3*(6*x^8 +57*x^7 +316*x^6 +763*x^5 +1056*x^4 +791*x^3 +316*x^2 +53*x +2)/((1-x)^9*(x+1)^3). - Vaclav Kotesovec, Mar 25 2010
MATHEMATICA
CoefficientList[Series[-4 x^2 (6 x^8 + 57 x^7 + 316 x^6 + 763 x^5 + 1056 x^4 + 791 x^3 + 316 x^2 + 53 x + 2) / ((x-1)^9 (x+1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, May 02 2013 *)
LinearRecurrence[{6, -12, 2, 27, -36, 0, 36, -27, -2, 12, -6, 1}, {0, 0, 8, 260, 2728, 16428, 70792, 242856, 706048, 1809464, 4199064, 8992684}, 30] (* Harvey P. Dale, Dec 09 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec(4*x^3*(6*x^8 +57*x^7 +316*x^6 +763*x^5 +1056*x^4 +791*x^3 +316*x^2 +53*x +2)/((1-x)^9*(x+1)^3))) \\ G. C. Greubel, Nov 04 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!(4*x^3*(6*x^8 +57*x^7 +316*x^6 +763*x^5 +1056*x^4 +791*x^3 +316*x^2 +53*x +2)/((1-x)^9*(x+1)^3))); // G. C. Greubel, Nov 04 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 26 2010
STATUS
approved