login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272392 Degeneracies of entanglement witness eigenstates for 2n spin 7/2 irreducible representations. 7
1, 1, 8, 260, 11096, 518498, 25593128, 1312660700, 69270071480, 3736677346685, 205125498479384, 11421904528488264, 643564228586076344, 36624864117451994600, 2102142593641513473240, 121548403269918189484872, 7073453049221266117909752, 413976401197504361048673896 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Gheorghe Coserea, Table of n, a(n) for n = 0..200

Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.

T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, hal-01345527, 2016.

FORMULA

a(n) ~ (2*sqrt(42)/441)*8^(2*n)/(sqrt(Pi)*(2*n)^(3/2)) * (1-23/(56*n)+O(1/n^2)). - Thomas Curtright and Cosmas Zachos, Jun 17 2016, updated Jul 26 2016

Recurrence: 7*n*(3*n - 7)*(3*n - 4)*(7*n - 19)*(7*n - 12)*(7*n - 11)*(7*n - 5)*(7*n - 4)*(7*n - 3)*(7*n - 2)*(7*n - 1)*(7*n + 1)*(9*n - 29)*(9*n - 20)*(9*n - 13)*(9*n - 11)*a(n) = 32*(2*n - 1)*(3*n - 7)*(7*n - 19)*(7*n - 12)*(7*n - 11)*(9*n - 29)*(9*n - 20)*(218437803*n^9 - 1510747767*n^8 + 4498401903*n^7 - 7551222032*n^6 + 7855986297*n^5 - 5239178603*n^4 + 2233354977*n^3 - 584916638*n^2 + 85090380*n - 5216400)*a(n-1) - 6144*(n-1)*(2*n - 3)*(2*n - 1)*(7*n - 19)*(9*n - 29)*(9*n - 2)*(460622295*n^10 - 5800755303*n^9 + 31804940376*n^8 - 99676215732*n^7 + 197077947989*n^6 - 255958437117*n^5 + 220361564054*n^4 - 123775781978*n^3 + 43301190686*n^2 - 8505466270*n + 711711000)*a(n-2) + 262144*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n - 1)*(7*n - 5)*(9*n - 11)*(9*n - 2)*(2988657*n^7 - 36693972*n^6 + 183168228*n^5 - 477680566*n^4 + 695101884*n^3 - 556549424*n^2 + 223584828*n - 34734735)*a(n-3) - 16777216*(n-3)*(n-2)*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n - 4)*(3*n - 1)*(7*n - 12)*(7*n - 5)*(7*n - 4)*(9*n - 20)*(9*n - 11)*(9*n - 4)*(9*n - 2)*a(n-4). - Vaclav Kotesovec, Jun 24 2016

a(n) = (1/Pi)*int((sin(8x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016

MATHEMATICA

a[n_]:= c[0, 2*n, 7/2]-c[1, 2*n, 7/2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)

PROG

(PARI)

N = 44; S = 7/2;

M = matrix(N+1, N*numerator(S)+1);

Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };

Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };

Minit() = {

my(step = 1/denominator(S));

Mset(0, 0, 1);

for (n = 1, N, forstep (j = 0, n*S, step,

my(acc = 0);

for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));

Mset(n, j, acc)));

};

Minit();

vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S), 0)) \\ Gheorghe Coserea, Apr 28 2016

CROSSREFS

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, this sequence, A272393, A272394, A272395.

Sequence in context: A172127 A230611 A230727 * A162083 A300734 A081058

Adjacent sequences: A272389 A272390 A272391 * A272393 A272394 A272395

KEYWORD

nonn

AUTHOR

Gheorghe Coserea, Apr 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 20:52 EST 2022. Contains 358543 sequences. (Running on oeis4.)