login
A007043
Number of noncommutative SL(2,C)-invariants of degree n in 5 variables.
(Formerly M3870)
11
1, 0, 1, 1, 5, 16, 65, 260, 1085, 4600, 19845, 86725, 383251, 1709566, 7687615, 34812519, 158614405, 726612216, 3344696501, 15462729645, 71763732545, 334236300200, 1561686608685, 7318223046860, 34386154568375, 161970182441556, 764676831501575, 3617755131480841
OFFSET
0,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Gert Almkvist, Warren Dicks, and Edward Formanek, Hilbert series of fixed free algebras and noncommutative classical invariant theory, J. Algebra 93 (1985), no. 1, 189-214.
Eliahu Cohen, Tobias Hansen, and Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
Thomas Curtright, T. S. Van Kortryk, and Cosmas Zachos, Spin Multiplicities, hal-01345527, 2016.
R. K. Guy, Parker's permutation problem involves the Catalan numbers, preprint, 1992. (Annotated scanned copy)
FORMULA
From Paul Barry, Oct 18 2007: (Start)
a(n) = Sum{k=0..n} Sum{j=0..k} C(n,k)*C(k,j)*(-3)^(k-j)*A000108(j);
a(n) = (1/(2*Pi))*Integral_{x=0..4} (1 - 3*x + x^2)^n*sqrt(x*(4 - x))/x dx. (End)
G.f.: F(G^(-1)(x)), where F(t) := (t^2 + 3*t + 1)/((t + 1)*(4*t + 1)^(1/2)) and G(t) := t/(t^2 + 3*t + 1). - Mark van Hoeij, Oct 30 2011
a(n) ~ 5^n/(8*sqrt(Pi)*n^(3/2)) * (1 - 15/(16*n) + O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
D-finite with recurrence: 2*n*(2*n + 1)*(3*n - 5)*a(n) = (n-1)*(3*n - 2)*(19*n - 20)*a(n-1) + 10*(n-1)*n*(3*n - 5)*a(n-2) - 25*(n-2)*(n-1)*(3*n - 2)*a(n-3). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*Integral_{x=0..2*Pi} (sin(5*x)/sin(x))^n*(sin(x))^2. - Thomas Curtright, Jun 24 2016
MAPLE
F := (t^2+3*t+1)/((t+1)*(4*t+1)^(1/2)); G := t/(t^2+3*t+1); Ginv := RootOf(numer(G-x), t); ogf := series(eval(F, t=Ginv), x=0, 20); # Mark van Hoeij, Oct 30 2011
MATHEMATICA
CoefficientList[Series[Sqrt[2]/Sqrt[(1 - x)*((1 + 5*x) + Sqrt[(1 - 5*x)*(1 - x)])], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 24 2016, after Almkvist, Dicks and Formanek *)
a[n_]:= c[0, n, 2]-c[1, n, 2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
CROSSREFS
Cf. A000108, A348210 (column k=2).
Sequence in context: A301958 A349568 A026525 * A128242 A323934 A166932
KEYWORD
nonn
STATUS
approved