login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272395
Degeneracies of entanglement witness eigenstates for n spin 5 irreducible representations.
7
1, 0, 1, 1, 11, 76, 671, 5916, 54131, 504316, 4779291, 45898975, 445798221, 4371237794, 43213522209, 430241859971, 4310236148075, 43417944574136, 439495074016427, 4468208369691396, 45605656313488271, 467140985042718910
OFFSET
0,5
COMMENTS
The Mathematica formula for a(n) as the difference of two generalized binomial coefficients is adapted from the Appendix of the Mendonça link. - Thomas Curtright, Jul 27 2016
LINKS
Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, hal-01345527, 2016.
Vaclav Kotesovec, Recurrence (of order 6)
J. R. G. Mendonça, Exact eigenspectrum of the symmetric simple exclusion process on the complete, complete bipartite and related graphs, Journal of Physics A: Mathematical and Theoretical 46:29 (2013) 295001. arXiv:1207.4106 [cond-mat.stat-mech], 2012-2013.
FORMULA
a(n)=(1/Pi)*int((sin(11x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016
a(n) ~ (1/20)^(3/2)*11^n/(sqrt(Pi)*n^(3/2))(1-63/(80n)+O(1/n^2)). - Thomas Curtright, Jul 26 2016
MATHEMATICA
a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(1024t^5-2304t^4+1792t^3-560t^2 +60t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
a[n_]:= c[0, n, 5]-c[1, n, 5]
c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Floor[(j + n*s)/(2*s + 1)]}] (* Thomas Curtright, Jul 26 2016 *)
a[n_]:= mult[0, n, 5]
mult[j_, n_, s_]:=Sum[(-1)^(k+1)*Binomial[n, k]*Binomial[n*s+j-(2*s+1)*k+n- 1, n*s+j-(2*s+1)*k+1], {k, 0, Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
PROG
(PARI)
N = 22; S = 5;
M = matrix(N+1, N*numerator(S)+1);
Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
Minit() = {
my(step = 1/denominator(S));
Mset(0, 0, 1);
for (n = 1, N, forstep (j = 0, n*S, step,
my(acc = 0);
for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
Mset(n, j, acc)));
};
Minit();
vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S), 0))
(PARI) c(j, n) = sum(k=0, min((j + 5*n)\11, n), (-1)^k*binomial(n, k)*binomial(j - 11*k + n + 5*n - 1, j - 11*k + n*5))
a(n)=c(0, n)-c(1, n) \\ Charles R Greathouse IV, Jul 28 2016; adapted from Curtright's Mathematica code
CROSSREFS
For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, A272392, A272393, A272394, this sequence.
Sequence in context: A245561 A056914 A232032 * A305727 A218395 A208599
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Apr 28 2016
STATUS
approved