OFFSET
0,4
COMMENTS
"Sum side" conjecture: also equals number of partitions pi = (pi_1, pi_2, ...) of n (with pi_1 >= pi_2 >= ...) such that pi(i)-pi(i+2) >= 3 and, if pi(i) - pi(i+1) <= 1, then pi(i) + pi(i+1) is congruent to 0 (mod 3).
LINKS
S. Kanade and M. C. Russell, IdentityFinder and some new identities of Rogers-Ramanujan type, Exp. Math. 24:4 (2015), pp. 419-423.
EXAMPLE
For n=10, the a(10)=8 partitions are 10, 8+1+1, 6+3+1, 6+1+1+1, 3+3+3+1, 3+3+1+1+1+1. 3+1+1+1+1+1+1+1, and 1+1+1+1+1+1+1+1+1+1.
For the conjectured "sum side", the a(10)=8 partitions are 10, 9+1, 8+2, 7+3, 7+2+1, 6+4, 6+3+1, and 5+4+1.
MATHEMATICA
Table[Length@ Select[IntegerPartitions@ n, AllTrue[Mod[#, 9], MemberQ[{1, 3, 6, 8}, #] &] &], {n, 0, 50}] (* Michael De Vlieger, Apr 28 2016, Version 10 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 28 2016
STATUS
approved