login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029046
Expansion of 1/((1-x)(1-x^3)(1-x^6)(1-x^8)).
0
1, 1, 1, 2, 2, 2, 4, 4, 5, 7, 7, 8, 11, 11, 13, 16, 17, 19, 23, 24, 27, 31, 33, 36, 42, 44, 48, 54, 57, 61, 69, 72, 78, 86, 90, 96, 106, 110, 118, 128, 134, 142, 154, 160, 170, 182, 190, 200, 215, 223, 235, 250, 260
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 6 and 8. - Ilya Gutkovskiy, May 14 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, -1, 0, 1, -1, 1, -2, 1, -1, 1, 0, -1, 1, 0, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=2, a(5)=2, a(6)=4, a(7)=4, a(8)=5, a(9)=7, a(10)=7, a(11)=8, a(12)=11, a(13)=11, a(14)=13, a(15)=16, a(16)=17, a(17)=19, a(n)=a(n-1)+a(n-3)-a(n-4)+a(n-6)-a(n-7)+a(n-8)- 2*a(n-9)+ a(n-10)-a(n-11)+a(n-12)-a(n-14)+a(n-15)+a(n-17)-a(n-18). - Harvey P. Dale, Apr 05 2014
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^6)(1-x^8)), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 1, -1, 0, 1, -1, 1, -2, 1, -1, 1, 0, -1, 1, 0, 1, -1}, {1, 1, 1, 2, 2, 2, 4, 4, 5, 7, 7, 8, 11, 11, 13, 16, 17, 19}, 80] (* Harvey P. Dale, Apr 05 2014 *)
CROSSREFS
Sequence in context: A035682 A054543 A240861 * A035372 A035576 A272397
KEYWORD
nonn
AUTHOR
STATUS
approved