login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272391 Degeneracies of entanglement witness eigenstates for 2n spin 5/2 irreducible representations. 7
1, 1, 6, 111, 2666, 70146, 1949156, 56267133, 1670963202, 50720602314, 1566629938776, 49080774275121, 1555873464248076, 49814409137161480, 1608523756282054800, 52323002586904505427, 1712956041168844662002 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Hacène Belbachir, Oussama Igueroufa, Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54.
Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
Thomas Curtright, Thomas Van Kortryk, and Cosmas Zachos, Spin Multiplicities, hal-01345527, 2016.
FORMULA
a(n) ~ (6*sqrt(210)/1225)*6^(2*n)/(sqrt(Pi)*(2*n)^(3/2)) * (1-123/(280n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
Recurrence: 5*n*(5*n - 8)*(5*n - 3)*(5*n - 2)*(5*n - 1)*(5*n + 1)*(7*n - 16)*(7*n - 10)*(7*n - 9)*a(n) = 6*(2*n - 1)*(5*n - 8)*(7*n - 16)*(499359*n^6 - 2314137*n^5 + 4264709*n^4 - 3984323*n^3 + 1983172*n^2 - 496780*n + 48720)*a(n-1) - 864*(n-1)*(2*n - 3)*(2*n - 1)*(7*n - 2)*(25480*n^5 - 160398*n^4 + 375142*n^3 - 401079*n^2 + 192819*n - 33500)*a(n-2) + 31104*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(5*n - 3)*(7*n - 9)*(7*n - 3)*(7*n - 2)*a(n-3). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(6x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016
MATHEMATICA
a[n_] := 2/Pi * 2^(2 * n) * Integrate[Sqrt[1 - t] * ((4 * t - 1)(4 * t - 3))^(2 * n) * Sqrt[t]^(2 * n - 1), {t, 0, 1}] (* Thomas Curtright, Jun 23 2016 *)
a[n_] := c[0, 2 n, 5/2] - c[1, 2 n, 5/2]; c[j_, n_, s_]:= Sum[(-1)^k * Binomial[n, k] * Binomial[j - (2 * s + 1) * k + n + n * s - 1, j - (2 * s + 1) * k + n * s], {k, 0, Min[n, Floor[(j + n * s)/(2 * s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
PROG
(PARI)
N = 34; S = 5/2;
M = matrix(N+1, N*numerator(S)+1);
Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
Minit() = {
my(step = 1/denominator(S));
Mset(0, 0, 1);
for (n = 1, N, forstep (j = 0, n*S, step,
my(acc = 0);
for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
Mset(n, j, acc)));
};
Minit();
vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S), 0))
CROSSREFS
For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, this sequence, A264608, A272392, A272393, A272394, A272395.
Sequence in context: A199222 A260026 A112499 * A197765 A024273 A024274
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Apr 28 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 16:01 EST 2024. Contains 370256 sequences. (Running on oeis4.)