The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218395 Numbers whose square is the sum of the squares of 11 consecutive integers. 13
 11, 77, 143, 1529, 2849, 30503, 56837, 608531, 1133891, 12140117, 22620983, 242193809, 451285769, 4831736063, 9003094397, 96392527451, 179610602171, 1923018812957, 3583208949023, 38363983731689, 71484568378289, 765356655820823, 1426108158616757 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n)^2 = Sum_{j=0..10} (x(n)+j)^2 = 11*(x(n)+5)^2 + 110 and b(n) = x(n)+5 give the Pell equation a(n)^2 - 11*b(n)^2 = 110 with the 2 fundamental solutions (11; 1) and (77; 23) and the solution (10; 3) for the unit form. A198949(n+1) = b(n); A106521(n) = x(n) and x(0) = -4. General: If the sum of the squares of c neighboring numbers is a square with c = 3*k^2-1 and 1 <= k, then a(n)^2 = Sum_{j=0..c-1} (x(n)+j)^2 and b(n) = 2*x(n)+c-1 give the Pell equation a(n)^2 - c*(b(n)/2)^2 = binomial(c+1,3)/2. a(n) = 2*e1*a(n-k) - a(n-2*k); b(n) = 2*e1*b(n-k) - b(n-2*k); a(n) = e1*a(n-k) + c*e2*b(n-k); b(n) = e2*a(n-k) + e1*b(n-k) with the solution (e1; e2) for the unit form. LINKS Table of n, a(n) for n=0..22. V. Pletser, Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials, arXiv preprint arXiv:1409.7972 [math.NT], 2014. See Table 1 p. 7. Index entries for linear recurrences with constant coefficients, signature (0,20,0,-1). FORMULA a(n) = 20*a(n-2) - a(n-4); b(n) = 20*b(n-2) - b(n-4); a(n) = 10*a(n-2) + 33*b(n-2); b(n) = 3*a(n-2) + 10*b(n-2). a(n) = a(n-1) + 20*a(n-2) - 20*a(n-3) - a(n-4) + a(n-5). G.f.: 11 * (1-x)*(1+8*x+x^2) / (1 - 20*x^2 + x^4). With r=sqrt(11); s=10+3*r; t=10-3*r: a(2*n) = ((11+r)*s^n + (11-r)*t^n)/2. a(2*n+1) = ((77+23*r) * s^n + (77-23*r)*t^n)/2. a(n) = 11 * A198947(n+1). - Bill McEachen, Dec 01 2022 EXAMPLE For n=6, Sum_{z=17132..17142} z^2 = 3230444569; a(6) = sqrt(3230444569) = 56837; b(6) = sqrt((a(6)^2-110)/11) = 17137; x(6) = b(6)-5 = 17132. MAPLE s:=0: n:=-1: for j from -5 to 5 do s:=s+j^2: end do: for z from -4 to 100000 do s:=s-(z-1)^2+(z+10)^2: r:=sqrt(s): if (r=floor(r)) then n:=n+1: a(n):=r: x(n):=z: b(n):=sqrt((s-110)/11): print(n, a(n), b(n), x(n)): end if: end do: MATHEMATICA LinearRecurrence[{0, 20, 0, -1}, {11, 77, 143, 1529}, 30] (* Harvey P. Dale, Aug 15 2022 *) CROSSREFS c=2: A001653(n+1) = a(n); A002315(n) = b(n); A001652(n) = x(n). Cf. A001032 (11 is a term of that sequence), A198947. Sequence in context: A232032 A272395 A305727 * A208599 A325733 A059625 Adjacent sequences: A218392 A218393 A218394 * A218396 A218397 A218398 KEYWORD nonn,easy AUTHOR Paul Weisenhorn, Oct 28 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:49 EST 2023. Contains 367616 sequences. (Running on oeis4.)