Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:50
%S 0,0,8,260,2728,16428,70792,242856,706048,1809464,4199064,8992684,
%T 18024072,34170724,61784632,107243472,179645376,291667440,460615272,
%U 709686228,1069477928,1579767068,2291594536,3269684088,4595235136
%N Number of ways to place 4 nonattacking bishops on an n X n board.
%D E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63
%H Vincenzo Librandi, <a href="/A172127/b172127.txt">Table of n, a(n) for n = 1..1000</a>
%H Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, <a href="http://arxiv.org/abs/1609.00853">A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks)</a>, arXiv:1609.00853 [math.CO], 2016.
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (6, -12, 2, 27, -36, 0, 36, -27, -2, 12, -6, 1).
%F Explicit formula (Karl Fabel, 1966): a(n) = n(n - 2)(15n^6 - 90n^5 + 260n^4 - 524n^3 + 727n^2 - 646n + 348)/360 if n is even and a(n) = (n - 1)(n - 2)(15n^6 - 75n^5 + 185n^4 - 339n^3 + 388n^2 - 258n + 180)/360 if n is odd.
%F G.f.: 4*x^3*(6*x^8 +57*x^7 +316*x^6 +763*x^5 +1056*x^4 +791*x^3 +316*x^2 +53*x +2)/((1-x)^9*(x+1)^3). - _Vaclav Kotesovec_, Mar 25 2010
%t CoefficientList[Series[-4 x^2 (6 x^8 + 57 x^7 + 316 x^6 + 763 x^5 + 1056 x^4 + 791 x^3 + 316 x^2 + 53 x + 2) / ((x-1)^9 (x+1)^3), {x, 0, 50}], x] (* _Vincenzo Librandi_, May 02 2013 *)
%t LinearRecurrence[{6,-12,2,27,-36,0,36,-27,-2,12,-6,1},{0,0,8,260,2728,16428,70792,242856,706048,1809464,4199064,8992684},30] (* _Harvey P. Dale_, Dec 09 2017 *)
%o (PARI) x='x+O('x^50); concat([0,0], Vec(4*x^3*(6*x^8 +57*x^7 +316*x^6 +763*x^5 +1056*x^4 +791*x^3 +316*x^2 +53*x +2)/((1-x)^9*(x+1)^3))) \\ _G. C. Greubel_, Nov 04 2018
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(4*x^3*(6*x^8 +57*x^7 +316*x^6 +763*x^5 +1056*x^4 +791*x^3 +316*x^2 +53*x +2)/((1-x)^9*(x+1)^3))); // _G. C. Greubel_, Nov 04 2018
%Y Cf. A061994, A172123, A172124.
%K nonn,easy
%O 1,3
%A _Vaclav Kotesovec_, Jan 26 2010