login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098994
Number of permutations of [n] with exactly 3 descents which avoid the pattern 1324.
1
0, 0, 0, 1, 26, 229, 1246, 5086, 17084, 49768, 129958, 311051, 693290, 1455909, 2906436, 5554172, 10217000, 18173272, 31373636, 52731365, 86514106, 138865053, 218487442, 337533050, 512743140, 766899120, 1130650170, 1644796335, 2363118186, 3355858221, 4713974824
OFFSET
1,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
G.f.: x^4*(1 + 14*x - 17*x^2 - 6*x^3 + 23*x^4 - 14*x^5 + 3*x^6) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>12. - Colin Barker, Oct 26 2017
PROG
(PARI) concat(vector(3), Vec(x^4*(1 + 14*x - 17*x^2 - 6*x^3 + 23*x^4 - 14*x^5 + 3*x^6) / (1 - x)^12 + O(x^40))) \\ Colin Barker, Oct 26 2017
CROSSREFS
Sequence in context: A220714 A159519 A110486 * A172124 A196633 A196638
KEYWORD
easy,nonn
AUTHOR
Mike Zabrocki, Nov 05 2004
STATUS
approved