Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Oct 26 2017 06:24:46
%S 0,0,0,1,26,229,1246,5086,17084,49768,129958,311051,693290,1455909,
%T 2906436,5554172,10217000,18173272,31373636,52731365,86514106,
%U 138865053,218487442,337533050,512743140,766899120,1130650170,1644796335,2363118186,3355858221,4713974824
%N Number of permutations of [n] with exactly 3 descents which avoid the pattern 1324.
%H T. D. Noe, <a href="/A098994/b098994.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
%F G.f.: x^4*(1 + 14*x - 17*x^2 - 6*x^3 + 23*x^4 - 14*x^5 + 3*x^6) / (1 - x)^12.
%F a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>12. - _Colin Barker_, Oct 26 2017
%o (PARI) concat(vector(3), Vec(x^4*(1 + 14*x - 17*x^2 - 6*x^3 + 23*x^4 - 14*x^5 + 3*x^6) / (1 - x)^12 + O(x^40))) \\ _Colin Barker_, Oct 26 2017
%Y Cf. A061552, A000292.
%K easy,nonn
%O 1,5
%A _Mike Zabrocki_, Nov 05 2004