login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089314
Sum of all digits in all even numbers from 0 to 444...4 (with n 4's).
1
0, 6, 128, 2220, 32112, 421004, 5209896, 62098788, 720987680, 8209876572, 92098765464, 1020987654356, 11209876543248, 122098765432140, 1320987654321032, 14209876543209924, 152098765432098816, 1620987654320987708, 17209876543209876600, 182098765432098765492
OFFSET
0,2
FORMULA
From Colin Barker, Sep 02 2015: (Start)
a(n) = (9*(9*10^n+28)*n-64*(10^n-1))/81.
a(n) = 22*a(n-1)-141*a(n-2)+220*a(n-3)-100*a(n-4) for n>3.
G.f.: 2*x*(125*x^2-2*x+3) / ((x-1)^2*(10*x-1)^2).
(End)
EXAMPLE
a(2) = 0+2+4+6+8+1+0+1+2+1+4+..+4+4 = 128.
MATHEMATICA
Table[Sum[Total@ IntegerDigits@ k, {k, 0, FromDigits@ Table[4, {n}], 2}], {n, 0, 8}] (* Michael De Vlieger, Sep 02 2015 *)
LinearRecurrence[{22, -141, 220, -100}, {0, 6, 128, 2220}, 20] (* Harvey P. Dale, Sep 03 2018 *)
PROG
(PARI) concat(0, Vec(2*x*(125*x^2-2*x+3)/((x-1)^2*(10*x-1)^2) + O(x^30))) \\ Colin Barker, Sep 02 2015
CROSSREFS
Cf. A089304.
Sequence in context: A223210 A324093 A177756 * A111873 A348796 A012842
KEYWORD
nonn,base,easy
AUTHOR
Yalcin Aktar, Dec 25 2003
EXTENSIONS
More terms from David Wasserman, Sep 09 2005
STATUS
approved