login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089314 Sum of all digits in all even numbers from 0 to 444...4 (with n 4's). 1
0, 6, 128, 2220, 32112, 421004, 5209896, 62098788, 720987680, 8209876572, 92098765464, 1020987654356, 11209876543248, 122098765432140, 1320987654321032, 14209876543209924, 152098765432098816, 1620987654320987708, 17209876543209876600, 182098765432098765492 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..996

Index entries for linear recurrences with constant coefficients, signature (22,-141,220,-100).

FORMULA

From Colin Barker, Sep 02 2015: (Start)

a(n) = (9*(9*10^n+28)*n-64*(10^n-1))/81.

a(n) = 22*a(n-1)-141*a(n-2)+220*a(n-3)-100*a(n-4) for n>3.

G.f.: 2*x*(125*x^2-2*x+3) / ((x-1)^2*(10*x-1)^2).

(End)

EXAMPLE

a(2) = 0+2+4+6+8+1+0+1+2+1+4+..+4+4 = 128.

MATHEMATICA

Table[Sum[Total@ IntegerDigits@ k, {k, 0, FromDigits@ Table[4, {n}], 2}], {n, 0, 8}] (* Michael De Vlieger, Sep 02 2015 *)

LinearRecurrence[{22, -141, 220, -100}, {0, 6, 128, 2220}, 20] (* Harvey P. Dale, Sep 03 2018 *)

PROG

(PARI) concat(0, Vec(2*x*(125*x^2-2*x+3)/((x-1)^2*(10*x-1)^2) + O(x^30))) \\ Colin Barker, Sep 02 2015

CROSSREFS

Cf. A089304.

Sequence in context: A223210 A324093 A177756 * A111873 A348796 A012842

Adjacent sequences:  A089311 A089312 A089313 * A089315 A089316 A089317

KEYWORD

nonn,base,easy

AUTHOR

Yalcin Aktar, Dec 25 2003

EXTENSIONS

More terms from David Wasserman, Sep 09 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 21:17 EST 2021. Contains 349468 sequences. (Running on oeis4.)