login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177755
Number of ways to place 2 nonattacking bishops on an n X n toroidal board.
8
0, 4, 18, 80, 200, 468, 882, 1600, 2592, 4100, 6050, 8784, 12168, 16660, 22050, 28928, 36992, 46980, 58482, 72400, 88200, 106964, 128018, 152640, 180000
OFFSET
1,2
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
FORMULA
Explicit formula: 1/4*n^2*(2*n^2-4*n+3+(-1)^n).
G.f.: -2*x^2*(x^5+8*x^4+14*x^3+18*x^2+5*x+2)/((x-1)^5*(x+1)^3).
a(1)=0, a(2)=4, a(3)=18, a(4)=80, a(5)=200, a(6)=468, a(7)=882, a(8)=1600, a(n)=2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8). - Harvey P. Dale, Mar 06 2013
MATHEMATICA
Table[(n^2 (2n^2-4n+3+(-1)^n))/4, {n, 30}] (* or *) LinearRecurrence[ {2, 2, -6, 0, 6, -2, -2, 1}, {0, 4, 18, 80, 200, 468, 882, 1600}, 30] (* Harvey P. Dale, Mar 06 2013 *)
CoefficientList[Series[- 2 x (x^5 + 8 x^4 + 14 x^3 + 18 x^2 + 5 x + 2) / ((x - 1)^5 (x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
CROSSREFS
Cf. A172123.
Sequence in context: A208309 A112619 A196810 * A037965 A045902 A090017
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 13 2010
STATUS
approved