login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196810
Number of ways to place 2 nonattacking nightriders on an n X n cylindrical board.
3
0, 4, 18, 80, 200, 420, 756, 1472, 2358, 3860, 5500, 8304, 11232, 15484, 21090, 27392, 34816, 44604, 55404, 69840, 84294, 102124, 122452, 147264, 173800, 203476, 237762, 276752, 318304, 368340, 418500, 478208, 541398, 611524, 689780, 774576, 863136, 963148
OFFSET
1,2
COMMENTS
A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.
LINKS
S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-queens problem I. General theory, arXiv:1303.1879 [math.CO], 2013-2014. See also. [N. J. A. Sloane, Feb 16 2013]
FORMULA
G.f.: -(2*x^2*(2 + 17*x + 96*x^2 + 384*x^3 + 1203*x^4 + 3100*x^5 + 6917*x^6 + 13670*x^7 + 24466*x^8 + 39974*x^9 + 60206*x^10 + 83709*x^11 + 107667*x^12 + 128088*x^13 + 141070*x^14 + 143882*x^15 + 136037*x^16 + 119239*x^17 + 96892*x^18 + 72808*x^19 + 50428*x^20 + 31926*x^21 + 18321*x^22 + 9388*x^23 + 4223*x^24 + 1622*x^25 + 514*x^26 + 127*x^27 + 22*x^28 + 2*x^29))/((-1+x)^5*(1+x)^3*(1+x^2)^3*(1+x+x^2)^3*(1+x+x^2+x^3+x^4)^3).
Recurrence: a(n) = a(n-32) + 4*a(n-31) + 10*a(n-30) + 17*a(n-29) + 20*a(n-28) + 11*a(n-27) - 15*a(n-26) - 54*a(n-25) - 90*a(n-24) - 99*a(n-23) - 63*a(n-22) + 18*a(n-21) + 116*a(n-20) + 188*a(n-19) + 194*a(n-18) + 123*a(n-17) - 123*a(n-15) - 194*a(n-14) - 188*a(n-13) - 116*a(n-12) - 18*a(n-11) + 63*a(n-10) + 99*a(n-9) + 90*a(n-8) + 54*a(n-7) + 15*a(n-6) - 11*a(n-5) - 20*a(n-4) - 17*a(n-3) - 10*a(n-2) - 4*a(n-1).
Explicit formula: a(n) = -n/4+(572*n^2)/225-(3*n^3)/2+n^4/2+(-1)^n*(n/4+n^2/2)+1/2*n^2*cos((n*Pi)/2)+16/25*n^2*cos((4*n*Pi)/5)+4/9*n^2*cos((4*n*Pi)/3)+16/25*n^2*cos((8*n*Pi)/5).
Chaiken et al. give a 4th degree quasi-polynomial formula. - N. J. A. Sloane, Feb 16 2013
Note that cited formula is for normal chessboard (not cylindrical), see sequence A172141. - Vaclav Kotesovec, Dec 09 2013
MATHEMATICA
Table[(143*n^2)/30-(79*n^3)/15+n^4/2+16/5*n^2*Floor[n/5]+n^2*Floor[n/4]+4/3*n^2*Floor[n/3]+(n+2*n^2)*Floor[n/2]+8/5*n^2*Floor[(1+n)/5]+n^2*Floor[(1+n)/4]+2/3*n^2*Floor[(1+n)/3]+8/5*n^2*Floor[(2+n)/5]+8/5*n^2*Floor[(3+n)/5], {n, 1, 100}]
CROSSREFS
Sequence in context: A240342 A208309 A112619 * A177755 A037965 A045902
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Oct 06 2011
STATUS
approved