Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Oct 12 2020 20:02:01
%S 0,4,18,80,200,420,756,1472,2358,3860,5500,8304,11232,15484,21090,
%T 27392,34816,44604,55404,69840,84294,102124,122452,147264,173800,
%U 203476,237762,276752,318304,368340,418500,478208,541398,611524,689780,774576,863136,963148
%N Number of ways to place 2 nonattacking nightriders on an n X n cylindrical board.
%C A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.
%H Vincenzo Librandi, <a href="/A196810/b196810.txt">Table of n, a(n) for n = 1..1000</a>
%H S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, <a href="http://arxiv.org/abs/1303.1879">A q-queens problem I. General theory</a>, arXiv:1303.1879 [math.CO], 2013-2014. See <a href="http://people.math.binghamton.edu/zaslav/Tpapers/qqs1.pdf">also</a>. [_N. J. A. Sloane_, Feb 16 2013]
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>
%F G.f.: -(2*x^2*(2 + 17*x + 96*x^2 + 384*x^3 + 1203*x^4 + 3100*x^5 + 6917*x^6 + 13670*x^7 + 24466*x^8 + 39974*x^9 + 60206*x^10 + 83709*x^11 + 107667*x^12 + 128088*x^13 + 141070*x^14 + 143882*x^15 + 136037*x^16 + 119239*x^17 + 96892*x^18 + 72808*x^19 + 50428*x^20 + 31926*x^21 + 18321*x^22 + 9388*x^23 + 4223*x^24 + 1622*x^25 + 514*x^26 + 127*x^27 + 22*x^28 + 2*x^29))/((-1+x)^5*(1+x)^3*(1+x^2)^3*(1+x+x^2)^3*(1+x+x^2+x^3+x^4)^3).
%F Recurrence: a(n) = a(n-32) + 4*a(n-31) + 10*a(n-30) + 17*a(n-29) + 20*a(n-28) + 11*a(n-27) - 15*a(n-26) - 54*a(n-25) - 90*a(n-24) - 99*a(n-23) - 63*a(n-22) + 18*a(n-21) + 116*a(n-20) + 188*a(n-19) + 194*a(n-18) + 123*a(n-17) - 123*a(n-15) - 194*a(n-14) - 188*a(n-13) - 116*a(n-12) - 18*a(n-11) + 63*a(n-10) + 99*a(n-9) + 90*a(n-8) + 54*a(n-7) + 15*a(n-6) - 11*a(n-5) - 20*a(n-4) - 17*a(n-3) - 10*a(n-2) - 4*a(n-1).
%F Explicit formula: a(n) = -n/4+(572*n^2)/225-(3*n^3)/2+n^4/2+(-1)^n*(n/4+n^2/2)+1/2*n^2*cos((n*Pi)/2)+16/25*n^2*cos((4*n*Pi)/5)+4/9*n^2*cos((4*n*Pi)/3)+16/25*n^2*cos((8*n*Pi)/5).
%F Chaiken et al. give a 4th degree quasi-polynomial formula. - _N. J. A. Sloane_, Feb 16 2013
%F Note that cited formula is for normal chessboard (not cylindrical), see sequence A172141. - _Vaclav Kotesovec_, Dec 09 2013
%t Table[(143*n^2)/30-(79*n^3)/15+n^4/2+16/5*n^2*Floor[n/5]+n^2*Floor[n/4]+4/3*n^2*Floor[n/3]+(n+2*n^2)*Floor[n/2]+8/5*n^2*Floor[(1+n)/5]+n^2*Floor[(1+n)/4]+2/3*n^2*Floor[(1+n)/3]+8/5*n^2*Floor[(2+n)/5]+8/5*n^2*Floor[(3+n)/5],{n,1,100}]
%Y Cf. A172141, A196812.
%K nonn,easy
%O 1,2
%A _Vaclav Kotesovec_, Oct 06 2011