login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177752
a(n) = [x^n] A(x)^n/(n+1) for n>1 where g.f. A(x) = Sum_{n>=0} a(n)*x^n with A(0)=A'(0)=1.
3
1, 1, 1, 7, 103, 2461, 85236, 4017959, 247296043, 19273646845, 1856844859198, 216816668773915, 30183137125497500, 4940046471894678145, 939290181452023884094, 205341788464993702617408
OFFSET
0,4
LINKS
FORMULA
Given g.f. A(x), if D(x) satisfies:
. D(x) = A(x*D(x)), so that
. [x^n] D(x) = [x^n] A(x)^(n+1)/(n+1),
then in this case:
. D(x) = exp( Sum_{n>=1} (n+1)*a(n)*x^n/n - x).
a(n) ~ c * (n!)^2 / sqrt(n), where c = 0.500612869985729164508780668394780439... - Vaclav Kotesovec, Oct 18 2017
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 7*x^3 + 103*x^4 + 2461*x^5 + 85236*x^6 +...
Coefficients in the initial powers of A(x) begin:
[1, 1, 1, 7, 103, 2461, 85236, 4017959, 247296043,...];
[1, 2,(3), 16, 221, 5142, 175649, 8212754, 502843539,...];
[1, 3, 6,(28), 357, 8067, 271591, 12592554, 766917744,...];
[1, 4, 10, 44,(515), 11264, 373448, 17166028, 1039805373,...];
[1, 5, 15, 65, 700,(14766), 481645, 21942390, 1321805265,...];
[1, 6, 21, 92, 918, 18612,(596652), 26931450, 1613229105,...];
[1, 7, 28, 126, 1176, 22848, 718991,(32143672), 1914402210,...];
[1, 8, 36, 168, 1482, 27528, 849244, 37590240,(2225664387),...]; ...
where the above coefficients in parenthesis illustrate the property
that the coefficient of x^n in A(x)^n = (n+1)*a(n) for n>1:
3 = 3*1; 28 = 4*7; 515 = 5*103; 14766 = 6*2461; 596652 = 7*85236; 32143672 = 8*4017959; ...
Therefore the logarithmic derivative of D(x) = A(x*D(x)) equals:
D'(x)/D(x) = 1 + 3*x + 28*x^2 + 515*x^3 + 14766*x^4 + 596652*x^5 +...
where [x^n] D(x) = [x^n] A(x)^(n+1)/(n+1) yields
D(x) = 1 + x + 2*x^2 + 11*x^3 + 140*x^4 + 3102*x^5 + 102713*x^6 +...
MATHEMATICA
a[n_] := a[n] = SeriesCoefficient[Sum[a[k]*x^k, {k, 0, n-1}]^n, {x, 0, n}]; a[0] = 1; a[1] = 1; Table[a[n], {n, 0, 20}] (* Vaclav Kotesovec, Oct 18 2017 *)
PROG
(PARI) {a(n)=local(F=1+sum(m=1, n-1, a(m)*x^m)+x*O(x^n)); if(n<2, 1, polcoeff(F^n, n))}
CROSSREFS
Sequence in context: A365014 A234292 A357347 * A101746 A318398 A318815
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 13 2010
STATUS
approved