login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] A(x)^n/(n+1) for n>1 where g.f. A(x) = Sum_{n>=0} a(n)*x^n with A(0)=A'(0)=1.
3

%I #11 Oct 18 2017 17:58:09

%S 1,1,1,7,103,2461,85236,4017959,247296043,19273646845,1856844859198,

%T 216816668773915,30183137125497500,4940046471894678145,

%U 939290181452023884094,205341788464993702617408

%N a(n) = [x^n] A(x)^n/(n+1) for n>1 where g.f. A(x) = Sum_{n>=0} a(n)*x^n with A(0)=A'(0)=1.

%H Vaclav Kotesovec, <a href="/A177752/b177752.txt">Table of n, a(n) for n = 0..250</a>

%F Given g.f. A(x), if D(x) satisfies:

%F . D(x) = A(x*D(x)), so that

%F . [x^n] D(x) = [x^n] A(x)^(n+1)/(n+1),

%F then in this case:

%F . D(x) = exp( Sum_{n>=1} (n+1)*a(n)*x^n/n - x).

%F a(n) ~ c * (n!)^2 / sqrt(n), where c = 0.500612869985729164508780668394780439... - _Vaclav Kotesovec_, Oct 18 2017

%e G.f.: A(x) = 1 + x + x^2 + 7*x^3 + 103*x^4 + 2461*x^5 + 85236*x^6 +...

%e Coefficients in the initial powers of A(x) begin:

%e [1, 1, 1, 7, 103, 2461, 85236, 4017959, 247296043,...];

%e [1, 2,(3), 16, 221, 5142, 175649, 8212754, 502843539,...];

%e [1, 3, 6,(28), 357, 8067, 271591, 12592554, 766917744,...];

%e [1, 4, 10, 44,(515), 11264, 373448, 17166028, 1039805373,...];

%e [1, 5, 15, 65, 700,(14766), 481645, 21942390, 1321805265,...];

%e [1, 6, 21, 92, 918, 18612,(596652), 26931450, 1613229105,...];

%e [1, 7, 28, 126, 1176, 22848, 718991,(32143672), 1914402210,...];

%e [1, 8, 36, 168, 1482, 27528, 849244, 37590240,(2225664387),...]; ...

%e where the above coefficients in parenthesis illustrate the property

%e that the coefficient of x^n in A(x)^n = (n+1)*a(n) for n>1:

%e 3 = 3*1; 28 = 4*7; 515 = 5*103; 14766 = 6*2461; 596652 = 7*85236; 32143672 = 8*4017959; ...

%e Therefore the logarithmic derivative of D(x) = A(x*D(x)) equals:

%e D'(x)/D(x) = 1 + 3*x + 28*x^2 + 515*x^3 + 14766*x^4 + 596652*x^5 +...

%e where [x^n] D(x) = [x^n] A(x)^(n+1)/(n+1) yields

%e D(x) = 1 + x + 2*x^2 + 11*x^3 + 140*x^4 + 3102*x^5 + 102713*x^6 +...

%t a[n_] := a[n] = SeriesCoefficient[Sum[a[k]*x^k, {k, 0, n-1}]^n, {x, 0, n}]; a[0] = 1; a[1] = 1; Table[a[n], {n, 0, 20}] (* _Vaclav Kotesovec_, Oct 18 2017 *)

%o (PARI) {a(n)=local(F=1+sum(m=1,n-1,a(m)*x^m)+x*O(x^n)); if(n<2,1,polcoeff(F^n,n))}

%Y Cf. A177753, A293864.

%K nonn

%O 0,4

%A _Paul D. Hanna_, May 13 2010