login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177759
Number of ways to place 6 nonattacking bishops on an n X n toroidal board.
4
0, 0, 0, 0, 0, 2304, 35280, 811008, 5080320, 38784000, 153679680, 699678720, 2120152320, 7113012480, 18036018000, 49416536064, 110279070720, 261526745088, 530024705280, 1128038400000
OFFSET
1,6
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
Index entries for linear recurrences with constant coefficients, signature (2, 10, -22, -44, 110, 110, -330, -165, 660, 132, -924, 0, 924, -132, -660, 165, 330, -110, -110, 44, 22, -10, -2, 1).
FORMULA
Explicit formula: 1/1440*(n-4)^2*(n-2)^2*n^2*(2*n^6 -36*n^5 +269*n^4 -1128*n^3 +3143*n^2-6330*n +7425 +(15*n^4 -240*n^3 +1545*n^2 -4950*n +6975)*(-1)^n).
G.f.: -48*x^6*(15*x^17 +2386*x^16 +6778*x^15 +133898*x^14 +235216*x^13 +1520054*x^12 +1844806*x^11 +5402462*x^10+4378450*x^9 +6819710*x^8 +3509350*x^7 +3079094*x^6+926032*x^5 +445642*x^4 +65754*x^3 +14946*x^2 +639*x+48)/((x-1)^13*(x+1)^11).
MATHEMATICA
CoefficientList[Series[- 48 x^5 * (15 x^17 + 2386 x^16 + 6778 x^15 + 133898 x^14 + 235216 x^13 + 1520054 x^12 + 1844806 x^11 + 5402462 x^10 + 4378450 x^9 + 6819710 x^8 + 3509350 x^7 + 3079094 x^6 + 926032 x^5 + 445642 x^4 + 65754 x^3 + 14946 x^2 + 639 x + 48) / ((x - 1)^13 (x+1)^11), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
LinearRecurrence[{2, 10, -22, -44, 110, 110, -330, -165, 660, 132, -924, 0, 924, -132, -660, 165, 330, -110, -110, 44, 22, -10, -2, 1}, {0, 0, 0, 0, 0, 2304, 35280, 811008, 5080320, 38784000, 153679680, 699678720, 2120152320, 7113012480, 18036018000, 49416536064, 110279070720, 261526745088, 530024705280, 1128038400000, 2120098821120, 4148067559680, 7337013702480, 13421018603520}, 30] (* Harvey P. Dale, Aug 20 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 13 2010
STATUS
approved