login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176886
Number of ways to place 6 nonattacking bishops on an n X n board.
10
0, 0, 0, 16, 1960, 53744, 692320, 5599888, 33001664, 154215760, 603563504, 2052729728, 6229649352, 17202203680, 43870041520, 104531112928, 234870173248, 501360888160
OFFSET
1,4
LINKS
Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
Index entries for linear recurrences with constant coefficients, signature (6, -8, -22, 69, -8, -176, 168, 182, -364, 0, 364, -182, -168, 176, 8, -69, 22, 8, -6, 1).
FORMULA
From Vaclav Kotesovec, Apr 27 2010: (Start)
Explicit formula: a(n) = n*(n-2)*(126*n^10 -2268*n^9 +18774*n^8 -97216*n^7 +361165*n^6 -1029454*n^5 +2283178*n^4 -3841960*n^3 +4676932*n^2 -3808152*n +1640160)/90720 if n is even and a(n) = (n-1)*(n-3)*(126*n^10 -2016*n^9 +14868*n^8 -69244*n^7 +234017*n^6 -607984*n^5 +1211879*n^4 -1797328*n^3 +1953593*n^2 -1550820*n +722925)/90720 if n is odd.
G.f.: -8x^4*(90x^15 +1332x^14 +15417x^13 +93042x^12 +372376x^11 +983864x^10 +1834807x^9 +2423054x^8 +2310242x^7 +1568260x^6 +748519x^5 +239742x^4 +48236x^3 +5264x^2 +233x +2)/((x-1)^13*(x+1)^7). (End)
MATHEMATICA
CoefficientList[Series[- 8 x^3 (90 x^15 + 1332 x^14 + 15417 x^13 + 93042 x^12 + 372376 x^11 + 983864 x^10 + 1834807 x^9 + 2423054 x^8 + 2310242 x^7 + 1568260 x^6 + 748519 x^5 + 239742 x^4 + 48236 x^3 + 5264 x^2 + 233 x + 2) / ((x - 1)^13 (x + 1)^7), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Apr 28 2010
STATUS
approved