login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176885
Let p*q = A006881(n) be the n-th number that is the product of two distinct primes, with p = prime(i), q=prime(j); a(n) = p^j - q^i.
1
1, 3, 9, 2, 32, 21, 51, 122, 111, 282, 237, 560, 489, 1898, 1794, 6200, 995, 2017, 13428, 19154, 4059, 2166, 8151, 73212, 16341, 58208, 89088, 176186, 32721, 383766, 65483, 530072, 1940958, 131013, 740022, 262083, 1592642, 4781120, 5634480, 524221
OFFSET
1,2
EXAMPLE
For n=3, A006881(3) = 14 = 2*7, p=2, i=1, q=7, j=4; a(n) = 2^4-7^1 = 9.
MAPLE
A176885 := proc(n) c := A006881(n) ; pm := A020639(c) ; pk := A006530(c) ; pm^ numtheory[pi](pk) -pk^numtheory[pi](pm) ; end proc:
seq(A176885(n), n=1..80) ; # R. J. Mathar, May 01 2010
CROSSREFS
Cf. A006881.
Sequence in context: A286676 A246379 A303941 * A257731 A257733 A098323
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(14) and a(15) corrected and sequence extended by R. J. Mathar, May 01 2010
Definition clarified by N. J. A. Sloane, Feb 16 2019
STATUS
approved