login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178590
a(2n) = 3*a(n), a(2n+1) = a(n) + a(n+1).
12
1, 3, 4, 9, 7, 12, 13, 27, 16, 21, 19, 36, 25, 39, 40, 81, 43, 48, 37, 63, 40, 57, 55, 108, 61, 75, 64, 117, 79, 120, 121, 243, 124, 129, 91, 144, 85, 111, 100, 189, 103, 120, 97, 171, 112, 165, 163, 324, 169, 183, 136, 225, 139, 192, 181, 351, 196, 237, 199, 360, 241
OFFSET
1,2
COMMENTS
In groups of 1, 2, 4, 8, ... terms; sums of group terms appears to be A081625: (1, 7, 41, 223,...), for example: 41 = (9 + 7 + 12 + 13).
Equals row 3 in the array shown in A178568, an infinite family of sequences of the form a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1).
Let M = an infinite lower triangular matrix with (1, 3, 1, 0, 0, 0,...) in each column, and with successive columns shifted down twice from the previous column. A178590 = Lim_{n->inf} M^n, the left-shifted vector considered as a sequence.
The Stern polynomial B(n,x) evaluated at x=3. See A125184. - T. D. Noe, Feb 28 2011
LINKS
FORMULA
a(2n) = 3*a(n), a(2n+1) = a(n) + a(n+1).
a(n) = A090880(A260443(n)). - Antti Karttunen, Jul 29 2015
G.f.: x * Product_{k>=0} (1 + 3*x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Jul 07 2019
EXAMPLE
In groups of 2^n terms (n=0,1,2,...):
1;
3, 4;
9, 7, 12, 13;
27, 16, 21, 19, 36, 25, 39, 40;
...
a(6) = 12 = 3*a(3) = 3*4
a(7) = 13 = a(3) + a(4) = 4 + 9
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = If[ OddQ@n, a[(n - 1)/2] + a[(n + 1)/2], 3*a[n/2]]; Array[a, 61] (* Robert G. Wilson v, Jun 11 2010 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A178590 n) (cond ((<= n 1) n) ((even? n) (* 3 (A178590 (/ n 2)))) (else (+ (A178590 (/ (- n 1) 2)) (A178590 (/ (+ n 1) 2))))))
;; Antti Karttunen, Jul 29 2015
CROSSREFS
Row 3 of A178568.
Sequence in context: A062319 A285265 A330385 * A022463 A378116 A239384
KEYWORD
nonn,look
AUTHOR
Gary W. Adamson, May 29 2010
EXTENSIONS
a(19) onwards from Robert G. Wilson v, Jun 11 2010
STATUS
approved