login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352626
a(n) = (n+1)*(3*n-2)*C(2*n,n-1)/(4*n-2).
1
1, 8, 42, 200, 910, 4032, 17556, 75504, 321750, 1361360, 5727436, 23984688, 100053772, 416024000, 1725013800, 7135405920, 29452939110, 121347523440, 499132441500, 2050025300400, 8408638258020, 34448503964160, 140974630569240, 576340150932000, 2354075068866300
OFFSET
1,2
COMMENTS
This is half the number of edges of the origami flip graph of the all-equal-angle single-vertex crease pattern of degree 2n.
LINKS
Thomas C. Hull, Manuel Morales, Sarah Nash, and Natalya Ter-Saakov, Maximal origami flip graphs of flat-foldable vertices: properties and algorithms, arXiv:2203.14173 [math.CO], 2022.
FORMULA
G.f.: x*(2*x+1)/(1-4*x)^(3/2).
D-finite with recurrence (-n+1)*a(n) +2*(n+2)*a(n-1) +4*(2*n-5)*a(n-2)=0. - R. J. Mathar, Mar 29 2022
a(n) = A002457(n-1)+2*A002457(n-2). - R. J. Mathar, Mar 29 2022
MAPLE
a:=n->(n+1)*(3*n-2)*binomial(2*n, n-1)/(4*n-2):
seq(a(n), n=1..33);
MATHEMATICA
a[n_] := (n + 1)*(3*n - 2)*Binomial[2*n, n - 1]/(4*n - 2); Array[a, 25] (* Amiram Eldar, Mar 25 2022 *)
PROG
(PARI) a(n) = (n+1)*(3*n-2)*binomial(2*n, n-1)/(4*n-2); \\ Michel Marcus, Mar 25 2022
CROSSREFS
Number of vertices of the origami flip graph of the all-equal-angle single-vertex crease pattern of degree 2n is A162551.
Sequence in context: A093381 A097788 A171478 * A276265 A249977 A037710
KEYWORD
nonn,easy
AUTHOR
Natalya Ter-Saakov, Mar 24 2022
STATUS
approved