The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352626 a(n) = (n+1)*(3*n-2)*C(2*n,n-1)/(4*n-2). 1
 1, 8, 42, 200, 910, 4032, 17556, 75504, 321750, 1361360, 5727436, 23984688, 100053772, 416024000, 1725013800, 7135405920, 29452939110, 121347523440, 499132441500, 2050025300400, 8408638258020, 34448503964160, 140974630569240, 576340150932000, 2354075068866300 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is half the number of edges of the origami flip graph of the all-equal-angle single-vertex crease pattern of degree 2n. LINKS Michael De Vlieger, Table of n, a(n) for n = 1..1658 Thomas C. Hull, Manuel Morales, Sarah Nash, and Natalya Ter-Saakov, Maximal origami flip graphs of flat-foldable vertices: properties and algorithms, arXiv:2203.14173 [math.CO], 2022. FORMULA G.f.: x*(2*x+1)/(1-4*x)^(3/2). D-finite with recurrence (-n+1)*a(n) +2*(n+2)*a(n-1) +4*(2*n-5)*a(n-2)=0. - R. J. Mathar, Mar 29 2022 a(n) = A002457(n-1)+2*A002457(n-2). - R. J. Mathar, Mar 29 2022 MAPLE a:=n->(n+1)*(3*n-2)*binomial(2*n, n-1)/(4*n-2): seq(a(n), n=1..33); MATHEMATICA a[n_] := (n + 1)*(3*n - 2)*Binomial[2*n, n - 1]/(4*n - 2); Array[a, 25] (* Amiram Eldar, Mar 25 2022 *) PROG (PARI) a(n) = (n+1)*(3*n-2)*binomial(2*n, n-1)/(4*n-2); \\ Michel Marcus, Mar 25 2022 CROSSREFS Number of vertices of the origami flip graph of the all-equal-angle single-vertex crease pattern of degree 2n is A162551. Sequence in context: A093381 A097788 A171478 * A276265 A249977 A037710 Adjacent sequences: A352623 A352624 A352625 * A352627 A352628 A352629 KEYWORD nonn,easy AUTHOR Natalya Ter-Saakov, Mar 24 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 09:27 EDT 2024. Contains 371851 sequences. (Running on oeis4.)