login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352624
Expansion of e.g.f. exp(exp(x) + cosh(x) - 2).
2
1, 1, 3, 8, 31, 122, 579, 2886, 16139, 95358, 611111, 4128830, 29709695, 224400022, 1785322699, 14841968646, 129015458195, 1167021383902, 10979895178511, 107113768171950, 1082508179141031, 11308614423992102, 121995294474174963, 1356835055606851286, 15542964081299602811
OFFSET
0,3
LINKS
FORMULA
a(0) = 1; a(n) = (1/2) * Sum_{k=1..n} binomial(n-1,k-1) * (3 + (-1)^k) * a(n-k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * A005046(k) * A000110(n-2*k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * A000807(k) * A003724(n-2*k).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-k)*binomial(n-1, k-1)*(2-(k mod 2)), k=1..n))
end:
seq(a(n), n=0..24); # Alois P. Heinz, Mar 24 2022
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[Exp[x] + Cosh[x] - 2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = (1/2) Sum[Binomial[n - 1, k - 1] (3 + (-1)^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 24 2022
STATUS
approved