login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(exp(x) + cosh(x) - 2).
2

%I #14 Mar 25 2022 10:13:53

%S 1,1,3,8,31,122,579,2886,16139,95358,611111,4128830,29709695,

%T 224400022,1785322699,14841968646,129015458195,1167021383902,

%U 10979895178511,107113768171950,1082508179141031,11308614423992102,121995294474174963,1356835055606851286,15542964081299602811

%N Expansion of e.g.f. exp(exp(x) + cosh(x) - 2).

%H Seiichi Manyama, <a href="/A352624/b352624.txt">Table of n, a(n) for n = 0..566</a>

%F a(0) = 1; a(n) = (1/2) * Sum_{k=1..n} binomial(n-1,k-1) * (3 + (-1)^k) * a(n-k).

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * A005046(k) * A000110(n-2*k).

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * A000807(k) * A003724(n-2*k).

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p a(n-k)*binomial(n-1, k-1)*(2-(k mod 2)), k=1..n))

%p end:

%p seq(a(n), n=0..24); # _Alois P. Heinz_, Mar 24 2022

%t nmax = 24; CoefficientList[Series[Exp[Exp[x] + Cosh[x] - 2], {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = 1; a[n_] := a[n] = (1/2) Sum[Binomial[n - 1, k - 1] (3 + (-1)^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]

%Y Cf. A000110, A000807, A001861, A003724, A005046, A352327, A352617.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Mar 24 2022