login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276265
Expansion of (1 + 2*x)/(1 - 6*x + 6*x^2).
0
1, 8, 42, 204, 972, 4608, 21816, 103248, 488592, 2312064, 10940832, 51772608, 244990656, 1159308288, 5485905792, 25959585024, 122842075392, 581294942208, 2750717200896, 13016533552128, 61594898107392, 291470187331584, 1379251735345152, 6526689288081408, 30884625316417536
OFFSET
0,2
COMMENTS
Satisfies recurrence relations system a(n) = 4*a(n-1) + 2*b(n-1), b(n) = 2*b(n-1) + a(n-1), a(0)=1, b(0)=2.
More generally, for the recurrence relations system a(n) = 4*a(n-1) + 2*b(n-1), b(n) = 2*b(n-1) + a(n-1), a(0)=k, b(0)=m solution is a(n) = (((sqrt(3) - 1)*k - 2*m)*(3 - sqrt(3))^n + (sqrt(3)*k + k + 2*m)*(3 + sqrt(3))^n)/(2*sqrt(3)), b(n) = ((-k + sqrt(3)*m + m)*(3 - sqrt(3))^n + (k + (sqrt(3) - 1)*m)*(3 + sqrt(3))^n)/(2*sqrt(3)).
Convolution of A030192 and {1, 2, 0, 0, 0, 0, 0, ...}.
FORMULA
O.g.f.: (1 + 2*x)/(1 - 6*x + 6*x^2).
E.g.f.: (5*sqrt(3)*sinh(sqrt(3)*x) + 3*cosh(sqrt(3)*x))*exp(3*x)/3.
a(n) = 6*a(n-1) - 6*a(n-2).
a(n) = ((-5 + sqrt(3))*(3 - sqrt(3))^n + (5 + sqrt(3))*(3 + sqrt(3))^n)/(2*sqrt(3)).
Lim_{n->infinity} a(n+1)/a(n) = 3 + sqrt(3) = A165663.
a(n) = A030192(n)+2*A030192(n-1). - R. J. Mathar, Jan 25 2023
MAPLE
a:=series((1+2*x)/(1-6*x+6*x^2), x=0, 25): seq(coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
LinearRecurrence[{6, -6}, {1, 8}, 25]
CoefficientList[Series[(1 + 2 x)/(1 - 6 x + 6 x^2), {x, 0, 24}], x] (* Michael De Vlieger, Aug 26 2016 *)
PROG
(PARI) Vec((1+2*x)/(1-6*x+6*x^2) + O(x^99)) \\ Altug Alkan, Aug 26 2016
CROSSREFS
Sequence in context: A097788 A171478 A352626 * A249977 A037710 A037612
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 26 2016
STATUS
approved