login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276262
Centered 22-gonal primes.
1
23, 67, 331, 463, 617, 991, 1453, 2003, 2311, 4621, 6073, 7151, 7723, 8317, 8933, 11617, 12343, 14653, 15467, 18041, 19867, 25873, 26951, 28051, 29173, 37643, 41603, 42967, 51613, 61051, 62701, 64373, 66067, 67783, 73063, 78541, 94117, 102433, 117833, 120121, 131891, 136753
OFFSET
1,1
COMMENTS
Primes of the form 11*k^2 + 11*k + 1.
Numbers k such that 11*k^2 + 11*k + 1 is prime: 1, 2, 5, 6, 7, 9, 11, 13, 14, 20, 23, 25, 26, 27, 28, 32, 33, 36, 37, 40, 42, 48, 49, 50, 51, ...
MAPLE
select(isprime, [seq(11*k^2+11*k+1, k=1..1000)]);
MATHEMATICA
Intersection[Table[11 k^2 + 11 k + 1, {k, 0, 1000}], Prime[Range[13000]]]
Select[Table[11n^2+11n+1, {n, 150}], PrimeQ] (* Harvey P. Dale, Nov 22 2023 *)
PROG
(PARI) lista(nn) = for(n=1, nn, if(isprime(p=11*n^2 + 11*n + 1), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016
(Magma) [k: n in [1..120] | IsPrime(k) where k is 11*n^2-11*n+1]; // Vincenzo Librandi, Aug 29 2016
CROSSREFS
Cf. centered k-gonal primes listed in A276261.
Sequence in context: A126377 A136064 A142302 * A078622 A280376 A134428
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 26 2016
STATUS
approved