login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276262 Centered 22-gonal primes. 1
23, 67, 331, 463, 617, 991, 1453, 2003, 2311, 4621, 6073, 7151, 7723, 8317, 8933, 11617, 12343, 14653, 15467, 18041, 19867, 25873, 26951, 28051, 29173, 37643, 41603, 42967, 51613, 61051, 62701, 64373, 66067, 67783, 73063, 78541, 94117, 102433, 117833, 120121, 131891, 136753 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes of the form 11*k^2 + 11*k + 1.

Numbers k such that 11*k^2 + 11*k + 1 is prime: 1, 2, 5, 6, 7, 9, 11, 13, 14, 20, 23, 25, 26, 27, 28, 32, 33, 36, 37, 40, 42, 48, 49, 50, 51, ...

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

OEIS Wiki, Centered polygonal numbers

Eric Weisstein's World of Mathematics, Centered Polygonal Number

Index entries for sequences related to centered polygonal numbers

MAPLE

select(isprime, [seq(11*k^2+11*k+1, k=1..1000)]);

MATHEMATICA

Intersection[Table[11 k^2 + 11 k + 1, {k, 0, 1000}], Prime[Range[13000]]]

PROG

(PARI) lista(nn) = for(n=1, nn, if(isprime(p=11*n^2 + 11*n + 1), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016

(MAGMA) [k: n in [1..120] | IsPrime(k) where k is 11*n^2-11*n+1]; // Vincenzo Librandi, Aug 29 2016

CROSSREFS

Cf. A000040, A069173.

Cf. centered k-gonal primes listed in A276261.

Sequence in context: A126377 A136064 A142302 * A078622 A280376 A134428

Adjacent sequences:  A276259 A276260 A276261 * A276263 A276264 A276265

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Aug 26 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 22:47 EST 2020. Contains 332086 sequences. (Running on oeis4.)