login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Centered 22-gonal primes.
1

%I #18 Nov 22 2023 11:54:50

%S 23,67,331,463,617,991,1453,2003,2311,4621,6073,7151,7723,8317,8933,

%T 11617,12343,14653,15467,18041,19867,25873,26951,28051,29173,37643,

%U 41603,42967,51613,61051,62701,64373,66067,67783,73063,78541,94117,102433,117833,120121,131891,136753

%N Centered 22-gonal primes.

%C Primes of the form 11*k^2 + 11*k + 1.

%C Numbers k such that 11*k^2 + 11*k + 1 is prime: 1, 2, 5, 6, 7, 9, 11, 13, 14, 20, 23, 25, 26, 27, 28, 32, 33, 36, 37, 40, 42, 48, 49, 50, 51, ...

%H Robert Israel, <a href="/A276262/b276262.txt">Table of n, a(n) for n = 1..10000</a>

%H OEIS Wiki, <a href="http://oeis.org/wiki/Centered_polygonal_numbers#cite_note-1">Centered polygonal numbers</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CenteredPolygonalNumber.html">Centered Polygonal Number</a>

%H <a href="/index/Ce#CENTRALCUBE">Index entries for sequences related to centered polygonal numbers</a>

%p select(isprime, [seq(11*k^2+11*k+1, k=1..1000)]);

%t Intersection[Table[11 k^2 + 11 k + 1, {k, 0, 1000}], Prime[Range[13000]]]

%t Select[Table[11n^2+11n+1,{n,150}],PrimeQ] (* _Harvey P. Dale_, Nov 22 2023 *)

%o (PARI) lista(nn) = for(n=1, nn, if(isprime(p=11*n^2 + 11*n + 1), print1(p, ", "))); \\ _Altug Alkan_, Aug 26 2016

%o (Magma) [k: n in [1..120] | IsPrime(k) where k is 11*n^2-11*n+1]; // _Vincenzo Librandi_, Aug 29 2016

%Y Cf. A000040, A069173.

%Y Cf. centered k-gonal primes listed in A276261.

%K nonn

%O 1,1

%A _Ilya Gutkovskiy_, Aug 26 2016