login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168648
a(n) = (10*2^n + 2*(-1)^n)/3 for n > 0; a(0) = 1.
3
1, 6, 14, 26, 54, 106, 214, 426, 854, 1706, 3414, 6826, 13654, 27306, 54614, 109226, 218454, 436906, 873814, 1747626, 3495254, 6990506, 13981014, 27962026, 55924054, 111848106, 223696214, 447392426, 894784854, 1789569706, 3579139414
OFFSET
0,2
FORMULA
a(n) = A084214(n+2) for n > 0.
a(n) = a(n-1) + 2*a(n-2) for n > 2; a(0) = 1, a(1) = 6, a(2) = 14.
G.f.: (1+2*x)*(1+3*x)/((1+x)*(1-2*x)).
E.g.f.: (1/3)*(10*exp(2*x) - 9 + 2*exp(-x)). - G. C. Greubel, Jul 28 2016
MATHEMATICA
{1}~Join~Table[(10*2^n + 2*(-1)^n)/3, {n, 40}] (* or *)
{1}~Join~LinearRecurrence[{1, 2}, {6, 14}, 40] (* G. C. Greubel, Jul 28 2016 *)
PROG
(Magma) [1] cat [ (10*2^n+2*(-1)^n)/3: n in [1..30] ];
(PARI) a(n) = if(n, (10<<n + 2*(-1)^n)/3, 1) \\ Charles R Greathouse IV, Jul 29 2016
(Sage) [1]+[(10*2^n +2*(-1)^n)/3 for n in (1..40)] # G. C. Greubel, Feb 05 2021
CROSSREFS
Cf. A084214 ((5*2^n -3*0^n +4*(-1)^n)/6).
Sequence in context: A165986 A292670 A131951 * A093776 A107317 A071776
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 01 2009
STATUS
approved