Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 08 2022 08:45:50
%S 1,8,42,190,806,3318,13462,54230,217686,872278,3492182,13974870,
%T 55911766,223671638,894735702,3579041110,14316361046,57265837398,
%U 229064136022,916258116950,3665035613526,14660148745558,58640607565142
%N a(n) = 6*a(n-1) - 8*a(n-2) + 2 for n > 1; a(0) = 1, a(1) = 8.
%C Second binomial transform of A168648.
%C Partial sums of A080960.
%H Harvey P. Dale, <a href="/A171478/b171478.txt">Table of n, a(n) for n = 0..1000</a> (* extending prior file from Vincenzo Librandi *)
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7, -14, 8).
%F a(n) = (10*4^n - 9*2^n + 2)/3.
%F G.f.: (1+x)/((1-x)*(1-2*x)*(1-4*x)).
%F a(0)=1, a(1)=8, a(2)=42, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - _Harvey P. Dale_, May 04 2012
%F a(n) = A203241(n+1) + 2^n*(2^(n+1)-1), n>0. - _J. M. Bergot_, Mar 21 2018
%p a:= proc(n) option remember: if n = 0 then 1 elif n = 1 then 8 elif n >= 2 then 6*procname(n-1) - 8*procname(n-2) + 2 fi; end:
%p seq(a(n), n = 0..25); # _Muniru A Asiru_, Mar 22 2018
%t RecurrenceTable[{a[0]==1,a[1]==8,a[n]==6a[n-1]-8a[n-2]+2},a,{n,30}] (* or *) LinearRecurrence[{7,-14,8},{1,8,42},30] (* _Harvey P. Dale_, May 04 2012 *)
%o (PARI) {m=23; v=concat([1, 8], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+2); v}
%o (Magma) [(10*4^n-9*2^n+2)/3: n in [0..30]]; // _Vincenzo Librandi_, Jul 18 2011
%o (GAP) a:=[1,8];; for n in [3..25] do a[n]:=6*a[n-1]-8*a[n-2]+2; od; a; # _Muniru A Asiru_, Mar 22 2018
%Y Cf. A168648 ((10*2^n+2*(-1)^n)/3, a(0)=1), A080960 (third binomial transform of A010685), A171472, A171473.
%K nonn,easy
%O 0,2
%A _Klaus Brockhaus_, Dec 09 2009