Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 May 14 2024 21:33:33
%S 1,8,42,184,731,2736,9844,34448,118101,398584,1328606,4384392,
%T 14348911,46633952,150663528,484275616,1549681961,4939611240,
%U 15690529810,49686677720,156905298051,494251688848,1553362450652,4871909504304,15251194969981,47659984281176
%N Expansion of 1/(1-4*x+3*x^2)^2.
%C Partial sums of A014915. - _Bruno Berselli_, Oct 26 2012
%C Convolution of A003462(n+1) with itself. - _Philippe Deléham_, Mar 07 2014
%H Bruno Berselli, <a href="/A212337/b212337.txt">Table of n, a(n) for n = 0..1000</a>
%H Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See p. 16.
%H S. Kitaev, J. Remmel, and M. Tiefenbruck, <a href="http://arxiv.org/abs/1201.6243">Marked mesh patterns in 132-avoiding permutations I,</a> arXiv:1201.6243v1 [math.CO], 2012. See (16).
%H Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, <a href="http://www.emis.de/journals/INTEGERS/papers/p16/p16.Abstract.html">Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II</a>, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (<a href="http://arxiv.org/abs/1302.2274">arXiv:1302.2274</a>)
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-22,24,-9).
%F From _Bruno Berselli_, May 11 2012: (Start)
%F G.f.: 1/((1-x)^2*(1-3*x)^2).
%F a(n) = 1+n*(1+9*3^n)/4. (End)
%F E.g.f.: exp(x)*(4 + x + 27*exp(2*x)*x)/4. - _Stefano Spezia_, May 14 2024
%e a(0) = 1*1 = 1;
%e a(1) = 1*4 + 4*1 = 8;
%e a(2) = 1*13 + 4*4 + 13*1 = 42;
%e a(3) = 1*40 + 4*13 + 13*4 + 40*1 = 184;
%e a(4) = 1*121 + 4*40 + 13*13 + 40*4 + 121*1 = 731; etc. - _Philippe Deléham_, Mar 07 2014
%t Table[1 + n ((1 + 9 3^n)/4), {n, 0, 25}] (* _Bruno Berselli_, May 11 2012 *)
%t CoefficientList[Series[1/(1-4x+3x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[ {8,-22,24,-9},{1,8,42,184},30] (* _Harvey P. Dale_, Jun 14 2020 *)
%o (Magma) m:=26; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^2*(1-3*x)^2))); // _Bruno Berselli_, May 11 2012
%o (PARI) Vec(1/(1-4*x+3*x^2)^2 + O(x^100)) \\ _Altug Alkan_, Nov 01 2015
%Y Cf. A003462, A014915.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, May 09 2012