login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*n^2 + 8*n.
19

%I #52 Oct 01 2023 08:59:14

%S 10,24,42,64,90,120,154,192,234,280,330,384,442,504,570,640,714,792,

%T 874,960,1050,1144,1242,1344,1450,1560,1674,1792,1914,2040,2170,2304,

%U 2442,2584,2730,2880,3034,3192,3354,3520,3690,3864,4042,4224,4410,4600,4794

%N a(n) = 2*n^2 + 8*n.

%C Positive numbers k such that 8*(8 + k) is a perfect square.

%H Vincenzo Librandi, <a href="/A067728/b067728.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n+1) = 2*n*n + 12*n + 10. - _Frank Ellermann_

%F a(n) = Sum_{k=0..n} Sum_{j=4..n} (j - k), n >= 4. - _Zerinvary Lajos_, May 11 2007

%F From _Vincenzo Librandi_, Jul 08 2012: (Start)

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%F G.f.: 2*x*(5-3*x)/(1-x)^3. (End)

%F From _Amiram Eldar_, Feb 25 2022: (Start)

%F Sum_{n>=1} 1/a(n) = 25/96.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 7/96. (End)

%F E.g.f.: 2*exp(x)*x*(5 + x). - _Stefano Spezia_, Oct 01 2023

%t Select[ Range[10000], IntegerQ[ Sqrt[ 8(8 + # )]] & ]

%t CoefficientList[Series[2*(5-3*x)/(1-x)^3,{x,0,50}],x] (* _Vincenzo Librandi_, Jul 08 2012 *)

%o (PARI) a(n)=2*n*(n+4) \\ _Charles R Greathouse IV_, Dec 07 2011

%o (Magma) [2*n*(n+4): n in [1..50]] // _Vincenzo Librandi_, Jul 08 2012

%o (Python)

%o def a(n): return (2*n + 8)*n

%o print([a(n) for n in range(1, 48)]) # _Michael S. Branicky_, Oct 24 2021

%Y Cf. 7: A067727, 6: A067726, 5: A067724, 3: A067725.

%Y Cf. A000217, A005563, A140091, A140681, A212331.

%K nonn,easy

%O 1,1

%A _Robert G. Wilson v_, Feb 05 2002