login
A322571
Positive integers A270710(k) (= (k+1)*(3*k-1)) which have only 1 or 2 different digits in base 10.
2
4, 15, 32, 55, 84, 119, 455, 799, 900, 3332, 3535, 7007, 8855, 244244, 333332, 335335, 400404, 445444, 555559, 666464, 799799, 1999199, 3303300, 33333332, 33353335, 3333333332, 3333533335, 333333333332, 333335333335, 700007077007, 33333333333332, 33333353333335, 3333333333333332, 3333333533333335
OFFSET
1,1
LINKS
FORMULA
a(n) = A270710(A322570(n)).
For k > 0, A002277(2*k) - 1 is a term.
MATHEMATICA
Select[Table[(n+1)(3n-1), {n, 3334*10^4}], Count[DigitCount[#], 0]>7&] (* Harvey P. Dale, Jun 12 2022 *)
PROG
(PARI) for(k=1, 1e8, if(#Set(digits(j=3*k^2+2*k-1))<=2, print1(j", ")))
(Magma) [a:k in [1..10000000]| #Set(Intseq(a)) le 2 where a is (k+1)*(3*k-1)]; // Marius A. Burtea, Aug 29 2019
CROSSREFS
Cf. A002277, A018885 (in case of squares), A213516 (in case of triangular numbers), A270710, A322570, A323639.
Sequence in context: A336607 A321490 A270710 * A110341 A317614 A331761
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 29 2019
STATUS
approved