login
A322573
G.f. = g(f(x)), where f(x) = g.f. of Fibonacci sequence A000045 and g(x) = g.f. of Jacobsthal sequence A001045.
0
0, 1, 2, 7, 22, 73, 240, 793, 2618, 8647, 28558, 94321, 311520, 1028881, 3398162, 11223367, 37068262, 122428153, 404352720, 1335486313, 4410811658, 14567921287, 48114575518, 158911647841, 524849519040, 1733460204961, 5725230133922, 18909150606727, 62452681954102, 206267196469033
OFFSET
0,3
LINKS
Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
FORMULA
G.f.: x*(1-x-x^2)/((1-3*x-x^2)*(1-x^2)).
a(n) = 3a(n-1)+2a(n-2)-3a(n-3)-a(n-4), a(0)=0, a(1)=1, a(2)=2, a(3)=7.
MAPLE
g:=x->x/(1-x-2*x^2):
f:=x->x/(1-x-x^2):
C:=n->coeff(series(g(f(x)), x, n+1), x, n):
seq(C(n), n=0..30);
MATHEMATICA
LinearRecurrence[{3, 2, -3, -1}, {0, 1, 2, 7}, 30] (* Jean-François Alcover, Nov 10 2019 *)
CROSSREFS
Sequence in context: A116387 A337805 A294006 * A294007 A294008 A294009
KEYWORD
nonn
AUTHOR
Oboifeng Dira, Aug 29 2019
EXTENSIONS
Edited by N. J. A. Sloane, Sep 23 2019
STATUS
approved