login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331761
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=2} (n+1-i)*(n+1-j).
8
0, 1, 4, 15, 32, 71, 124, 211, 320, 499, 716, 999, 1328, 1799, 2340, 3023, 3792, 4767, 5852, 7135, 8544, 10319, 12260, 14471, 16864, 19775, 22916, 26467, 30272, 34587, 39188, 44347, 49824, 56195, 62948, 70311, 78080, 86975
OFFSET
1,3
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n=1..600 from N. J. A. Sloane)
M. A. Alekseyev. On the number of two-dimensional threshold functions. arXiv:math/0602511 [math.CO], 2006-2009; doi:10.1137/090750184, SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631.
M. A. Alekseyev, M. Basova and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions, SIAM J. Disc. Math. 29(1), 2015, pp. 157-165.
FORMULA
Conjecture: As n -> oo, a(n) ~ C*n^4/Pi^2, where C is about 0.3775. - N. J. A. Sloane, Jul 03 2020
a(n) = (n-1)^2 + 2*Sum_{i=2..floor(n/2)} (n+1-2*i)*(n+1-i)*phi(i). - Chai Wah Wu, Aug 16 2021
MATHEMATICA
Table[Sum[Boole[GCD[i, j] == 2] (n + 1 - i) (n + 1 - j), {i, n}, {j, n}], {n, 38}] (* Michael De Vlieger, Feb 04 2020 *)
PROG
(Python)
from sympy import totient
def A331761(n): return (n-1)**2 + 2*sum(totient(i)*(n+1-2*i)*(n+1-i) for i in range(2, n//2+1)) # Chai Wah Wu, Aug 16 2021
CROSSREFS
Cf. A115004.
The main diagonal of A331762.
Sequence in context: A322571 A110341 A317614 * A116035 A256715 A022265
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 04 2020
STATUS
approved