login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331762
Triangle read by rows: T(n,k) (1 <= k <= n) = Sum_{i=1..n, j=1..k, gcd(i,j)=2} (n+1-i)*(k+1-j).
4
0, 0, 1, 0, 2, 4, 0, 4, 8, 15, 0, 6, 12, 22, 32, 0, 9, 18, 33, 48, 71, 0, 12, 24, 44, 64, 94, 124, 0, 16, 32, 58, 84, 123, 162, 211, 0, 20, 40, 72, 104, 152, 200, 260, 320, 0, 25, 50, 90, 130, 190, 250, 325, 400, 499
OFFSET
1,5
LINKS
M. A. Alekseyev. On the number of two-dimensional threshold functions. SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631. doi:10.1137/090750184
M. A. Alekseyev, M. Basova, N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM J. Disc. Math. 29(1), 2015, pp. 157-165.
EXAMPLE
Triangle begins:
0;
0, 1;
0, 2, 4;
0, 4, 8, 15;
0, 6, 12, 22, 32;
0, 9, 18, 33, 48, 71;
0, 12, 24, 44, 64, 94, 124;
0, 16, 32, 58, 84, 123, 162, 211;
0, 20, 40, 72, 104, 152, 200, 260, 320;
0, 25, 50, 90, 130, 190, 250, 325, 400, 499;
0, 30, 60, 108, 156, 228, 300, 390, 480, 598, 716;
...
MAPLE
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
for m from 1 to 12 do
lprint([seq(V(m, n, 2), n=1..m)]); od:
MATHEMATICA
Table[Sum[Boole[GCD[i, j] == 2] (n + 1 - i) (k + 1 - j), {i, n}, {j, k}], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Feb 04 2020 *)
CROSSREFS
The main diagonal is A331761.
See A335683 for another version.
Sequence in context: A364315 A115368 A086932 * A221255 A341862 A256487
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 04 2020
STATUS
approved