login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322574
z(1) = 0, and for any n > 0, z(4*n-2) = z(n) + k(n), z(4*n-1) = z(n) + i*k(n), z(4*n) = z(n) - k(n) and z(4*n+1) = z(n) - i*k(n) where k(n) is the least positive integer not leading to a duplicate term in sequence z (and i denotes the imaginary unit); a(n) is the real part of z(n).
4
0, 1, 0, -1, 0, 4, 1, -2, 1, 3, 0, -3, 0, 2, -1, -4, -1, 3, 0, -3, 0, 5, 4, 3, 4, 2, 1, 0, 1, 6, -2, -10, -2, 2, 1, 0, 1, 7, 3, -1, 3, 9, 0, -9, 0, -2, -3, -4, -3, 7, 0, -7, 0, 9, 2, -5, 2, 3, -1, -5, -1, 7, -4, -15, -4, 4, -1, -6, -1, 8, 3, -2, 3, 8, 0, -8, 0
OFFSET
1,6
COMMENTS
Will z run through every Gaussian integer?
EXAMPLE
The first terms, alongside z(n), k(n) and associate children, are:
n a(n) z(n) k z(4*n-2) z(4*n-1) z(4*n) z(4*n+1)
-- ---- ------- - -------- -------- ------ --------
1 0 0 1 1 i -1 -i
2 1 1 3 4 1 + 3*i -2 1 - 3*i
3 0 i 3 3 + i 4*i -3 + i -2*i
4 -1 -1 3 2 -1 + 3*i -4 -1 - 3*i
5 0 -i 3 3 - i 2*i -3 - i -4*i
6 4 4 1 5 4 + i 3 4 - i
7 1 1 + 3*i 1 2 + 3*i 1 + 4*i 3*i 1 + 2*i
8 -2 -2 8 6 -2 + 8*i -10 -2 - 8*i
9 1 1 - 3*i 1 2 - 3*i 1 - 2*i -3*i 1 - 4*i
10 3 3 + i 4 7 + i 3 + 5*i -1 + i 3 - 3*i
PROG
(PARI) \\ See Links section.
CROSSREFS
See A322575 for the imaginary part of z.
This sequence is a complex variant of A322510.
Sequence in context: A247004 A010640 A244424 * A030787 A176218 A109008
KEYWORD
sign
AUTHOR
Rémy Sigrist, Dec 17 2018
STATUS
approved