login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

z(1) = 0, and for any n > 0, z(4*n-2) = z(n) + k(n), z(4*n-1) = z(n) + i*k(n), z(4*n) = z(n) - k(n) and z(4*n+1) = z(n) - i*k(n) where k(n) is the least positive integer not leading to a duplicate term in sequence z (and i denotes the imaginary unit); a(n) is the real part of z(n).
4

%I #16 Aug 27 2024 18:30:18

%S 0,1,0,-1,0,4,1,-2,1,3,0,-3,0,2,-1,-4,-1,3,0,-3,0,5,4,3,4,2,1,0,1,6,

%T -2,-10,-2,2,1,0,1,7,3,-1,3,9,0,-9,0,-2,-3,-4,-3,7,0,-7,0,9,2,-5,2,3,

%U -1,-5,-1,7,-4,-15,-4,4,-1,-6,-1,8,3,-2,3,8,0,-8,0

%N z(1) = 0, and for any n > 0, z(4*n-2) = z(n) + k(n), z(4*n-1) = z(n) + i*k(n), z(4*n) = z(n) - k(n) and z(4*n+1) = z(n) - i*k(n) where k(n) is the least positive integer not leading to a duplicate term in sequence z (and i denotes the imaginary unit); a(n) is the real part of z(n).

%C Will z run through every Gaussian integer?

%H Rémy Sigrist, <a href="/A322574/b322574.txt">Table of n, a(n) for n = 1..10000</a>

%H Rémy Sigrist, <a href="/A322574/a322574.png">Colored representation of z(n) for n = 1..400000 in the complex plane</a> (where the hue is function of n)

%H Rémy Sigrist, <a href="/A322574/a322574_1.png">Colored representation of z(n) such that max(|Re(z(n))|, |Im(z(n))|) < 1000 for n = 1..10000000 in the complex plane</a> (where the hue is function of n)

%H Rémy Sigrist, <a href="/A322574/a322574.gp.txt">PARI program for A322574</a>

%e The first terms, alongside z(n), k(n) and associate children, are:

%e n a(n) z(n) k z(4*n-2) z(4*n-1) z(4*n) z(4*n+1)

%e -- ---- ------- - -------- -------- ------ --------

%e 1 0 0 1 1 i -1 -i

%e 2 1 1 3 4 1 + 3*i -2 1 - 3*i

%e 3 0 i 3 3 + i 4*i -3 + i -2*i

%e 4 -1 -1 3 2 -1 + 3*i -4 -1 - 3*i

%e 5 0 -i 3 3 - i 2*i -3 - i -4*i

%e 6 4 4 1 5 4 + i 3 4 - i

%e 7 1 1 + 3*i 1 2 + 3*i 1 + 4*i 3*i 1 + 2*i

%e 8 -2 -2 8 6 -2 + 8*i -10 -2 - 8*i

%e 9 1 1 - 3*i 1 2 - 3*i 1 - 2*i -3*i 1 - 4*i

%e 10 3 3 + i 4 7 + i 3 + 5*i -1 + i 3 - 3*i

%o (PARI) \\ See Links section.

%Y See A322575 for the imaginary part of z.

%Y This sequence is a complex variant of A322510.

%K sign

%O 1,6

%A _Rémy Sigrist_, Dec 17 2018