login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321500
Triangular table T(n,k) = (n+k)*(n^2+k^2), n >= k >= 0; read by rows n = 0, 1, 2, ...
4
0, 1, 4, 8, 15, 32, 27, 40, 65, 108, 64, 85, 120, 175, 256, 125, 156, 203, 272, 369, 500, 216, 259, 320, 405, 520, 671, 864, 343, 400, 477, 580, 715, 888, 1105, 1372, 512, 585, 680, 803, 960, 1157, 1400, 1695, 2048
OFFSET
0,3
FORMULA
Sum_{k=0..n} T(n,k) = 5*n^2*(n+1)*(5*n+1)/12 = 5*A117066(n). - G. C. Greubel, Nov 23 2018
EXAMPLE
The table starts:
n | T(n,k), k = 0..n:
0 | 0;
1 | 1, 4;
2 | 8, 15, 32;
3 | 27, 40, 65, 108;
4 | 64, 85, 120, 175, 256;
5 | 125, 156, 203, 272, 369, 500;
6 | 216, 259, 320, 405, 520, 671, 864;
7 | 343, 400, 477, 580, 715, 888, 1105, 1372;
8 | 512, 585, 680, 803, 960, 1157, 1400, 1695, 2048;
etc.
MATHEMATICA
t[n_, k_] := (n + k) (n^2 + k^2); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
PROG
(PARI) A321500(n, k)=(n+k)*(n^2+k^2)
A321500_row(n)=vector(n+1, k, (n+k--)*(n^2+k^2))
A321500_list(N=11)=concat(apply(A321500_row, [0..N]))
(Magma) [[(n+k)*(n^2+k^2): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Nov 23 2018
(Sage) [[(n+k)*(n^2+k^2) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Nov 23 2018
CROSSREFS
Cf. A000578 (column 0: the cubes), A033430 (diagonal: 4*n^3), A053698 (column 1).
Cf. A198063 (read as A(n,k)=(n+k)*(n^2+k^2)).
Sequence in context: A301203 A018921 A305218 * A103536 A011970 A074025
KEYWORD
nonn,tabl,easy
AUTHOR
M. F. Hasler, Nov 22 2018
STATUS
approved