OFFSET
0,3
LINKS
M. F. Hasler, Rows n = 0..141 of triangle, flattened
FORMULA
Sum_{k=0..n} T(n,k) = 5*n^2*(n+1)*(5*n+1)/12 = 5*A117066(n). - G. C. Greubel, Nov 23 2018
EXAMPLE
The table starts:
n | T(n,k), k = 0..n:
0 | 0;
1 | 1, 4;
2 | 8, 15, 32;
3 | 27, 40, 65, 108;
4 | 64, 85, 120, 175, 256;
5 | 125, 156, 203, 272, 369, 500;
6 | 216, 259, 320, 405, 520, 671, 864;
7 | 343, 400, 477, 580, 715, 888, 1105, 1372;
8 | 512, 585, 680, 803, 960, 1157, 1400, 1695, 2048;
etc.
MATHEMATICA
t[n_, k_] := (n + k) (n^2 + k^2); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
PROG
(PARI) A321500(n, k)=(n+k)*(n^2+k^2)
A321500_row(n)=vector(n+1, k, (n+k--)*(n^2+k^2))
(Magma) [[(n+k)*(n^2+k^2): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Nov 23 2018
(Sage) [[(n+k)*(n^2+k^2) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Nov 23 2018
CROSSREFS
KEYWORD
AUTHOR
M. F. Hasler, Nov 22 2018
STATUS
approved