Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:46:23
%S 0,1,4,8,15,32,27,40,65,108,64,85,120,175,256,125,156,203,272,369,500,
%T 216,259,320,405,520,671,864,343,400,477,580,715,888,1105,1372,512,
%U 585,680,803,960,1157,1400,1695,2048
%N Triangular table T(n,k) = (n+k)*(n^2+k^2), n >= k >= 0; read by rows n = 0, 1, 2, ...
%H M. F. Hasler, <a href="/A321500/b321500.txt">Rows n = 0..141 of triangle, flattened</a>
%F Sum_{k=0..n} T(n,k) = 5*n^2*(n+1)*(5*n+1)/12 = 5*A117066(n). - _G. C. Greubel_, Nov 23 2018
%e The table starts:
%e n | T(n,k), k = 0..n:
%e 0 | 0;
%e 1 | 1, 4;
%e 2 | 8, 15, 32;
%e 3 | 27, 40, 65, 108;
%e 4 | 64, 85, 120, 175, 256;
%e 5 | 125, 156, 203, 272, 369, 500;
%e 6 | 216, 259, 320, 405, 520, 671, 864;
%e 7 | 343, 400, 477, 580, 715, 888, 1105, 1372;
%e 8 | 512, 585, 680, 803, 960, 1157, 1400, 1695, 2048;
%e etc.
%t t[n_, k_] := (n + k) (n^2 + k^2); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Nov 22 2018 *)
%o (PARI) A321500(n, k)=(n+k)*(n^2+k^2)
%o A321500_row(n)=vector(n+1, k, (n+k--)*(n^2+k^2))
%o A321500_list(N=11)=concat(apply(A321500_row, [0..N]))
%o (Magma) [[(n+k)*(n^2+k^2): k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, Nov 23 2018
%o (Sage) [[(n+k)*(n^2+k^2) for k in range(n+1)] for n in range(12)] # _G. C. Greubel_, Nov 23 2018
%Y Cf. A000578 (column 0: the cubes), A033430 (diagonal: 4*n^3), A053698 (column 1).
%Y Cf. A198063 (read as A(n,k)=(n+k)*(n^2+k^2)).
%K nonn,tabl,easy
%O 0,3
%A _M. F. Hasler_, Nov 22 2018