login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321498
Numbers which can be written in at least two ways in the form (x-y)*(x^2-y^2) with x > y > 0.
2
45, 63, 81, 96, 99, 117, 128, 135, 153, 160, 171, 175, 189, 192, 207, 224, 225, 243, 256, 261, 275, 279, 288, 297, 315, 320, 325, 333, 351, 352, 360, 369, 375, 384, 387, 405, 416, 423, 425, 432, 441, 448, 459, 475, 477, 480, 495, 504, 512, 513, 525, 531, 539, 544, 549, 567, 575, 576, 585
OFFSET
1,1
COMMENTS
An equivalent form is (x - y)^2*(x + y), or d^2*(d + 2y), where d = x - y > 0 and y > 0. See also A321499.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..13937 (terms < 10^5)
Geoffrey B. Campbell, (m-n)(m^2-n^2) in two different ways, LinkedIn Number Theory Group, Aug. 2018.
EXAMPLE
45 = (4 - 1)*(4^2 - 1^2) = (23 - 22)*(23^2 - 22^2),
63 = (5 - 2)*(5^2 - 2^2) = (32 - 31)*(32^2 - 31^2),
81 = (6 - 3)*(6^2 - 3^2) = (41 - 40)*(41^2 - 40^2),
96 = (5 - 1)*(5^2 - 1^2) = (13 - 11)*(13^2 - 11^2),
99 = (7 - 4)*(7^2 - 4^2) = (50 - 49)*(50^2 - 49^2),
117 = (8 - 5)*(8^2 - 5^2) = (59 - 58)*(59^2 - 58^2).
MATHEMATICA
aQ[n_] := Length[Solve[(x-y)*(x^2-y^2) ==n && x > y && y > 0, {x, y}, Integers]] > 1; Select[Range[600], aQ] (* Amiram Eldar, Dec 06 2018 *)
PROG
(PARI) select( is_A321498(n, c=2)={n&&!issquarefree(n)&&fordiv(n, d, d^2*(d+2)>n && break; n%d^2&&next; bittest(n\d^2-d, 0)||c--||return(1))}, [0..999]) \\ Define the function is_A321498(). \\ ~30% speed up by David A. Corneth, Nov 23 2018
(PARI) is(n) = {if(issquarefree(n), return(0)); if(n % 2 == 0, if(n % 8 == 0, n\=8, return(0))); f = factor(n); e = select(x -> x > 1, f[, 2], 1); if(#e == 0 || n == 1, return(0), k = e[1]); n > f[k, 1]^3} \\ David A. Corneth, Dec 01 2018
CROSSREFS
Cf. A321499.
Sequence in context: A175761 A360769 A046364 * A051773 A307222 A336553
KEYWORD
nonn
AUTHOR
Geoffrey B. Campbell and M. F. Hasler, Nov 22 2018
STATUS
approved