Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 07 2018 19:13:42
%S 45,63,81,96,99,117,128,135,153,160,171,175,189,192,207,224,225,243,
%T 256,261,275,279,288,297,315,320,325,333,351,352,360,369,375,384,387,
%U 405,416,423,425,432,441,448,459,475,477,480,495,504,512,513,525,531,539,544,549,567,575,576,585
%N Numbers which can be written in at least two ways in the form (x-y)*(x^2-y^2) with x > y > 0.
%C An equivalent form is (x - y)^2*(x + y), or d^2*(d + 2y), where d = x - y > 0 and y > 0. See also A321499.
%H David A. Corneth, <a href="/A321498/b321498.txt">Table of n, a(n) for n = 1..13937</a> (terms < 10^5)
%H Geoffrey B. Campbell, <a href="https://www.linkedin.com/groups/4510047/4510047-6434733867093057540">(m-n)(m^2-n^2) in two different ways</a>, LinkedIn Number Theory Group, Aug. 2018.
%e 45 = (4 - 1)*(4^2 - 1^2) = (23 - 22)*(23^2 - 22^2),
%e 63 = (5 - 2)*(5^2 - 2^2) = (32 - 31)*(32^2 - 31^2),
%e 81 = (6 - 3)*(6^2 - 3^2) = (41 - 40)*(41^2 - 40^2),
%e 96 = (5 - 1)*(5^2 - 1^2) = (13 - 11)*(13^2 - 11^2),
%e 99 = (7 - 4)*(7^2 - 4^2) = (50 - 49)*(50^2 - 49^2),
%e 117 = (8 - 5)*(8^2 - 5^2) = (59 - 58)*(59^2 - 58^2).
%t aQ[n_] := Length[Solve[(x-y)*(x^2-y^2) ==n && x > y && y > 0, {x,y}, Integers]] > 1; Select[Range[600], aQ] (* _Amiram Eldar_, Dec 06 2018 *)
%o (PARI) select( is_A321498(n,c=2)={n&&!issquarefree(n)&&fordiv(n, d, d^2*(d+2)>n && break; n%d^2&&next; bittest(n\d^2-d, 0)||c--||return(1))}, [0..999]) \\ Define the function is_A321498(). \\ ~30% speed up by _David A. Corneth_, Nov 23 2018
%o (PARI) is(n) = {if(issquarefree(n), return(0)); if(n % 2 == 0, if(n % 8 == 0, n\=8, return(0))); f = factor(n); e = select(x -> x > 1, f[, 2], 1); if(#e == 0 || n == 1, return(0), k = e[1]); n > f[k, 1]^3} \\ _David A. Corneth_, Dec 01 2018
%Y Cf. A321499.
%K nonn
%O 1,1
%A Geoffrey B. Campbell and _M. F. Hasler_, Nov 22 2018