login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360769
Odd numbers that are neither prime powers nor squarefree.
5
45, 63, 75, 99, 117, 135, 147, 153, 171, 175, 189, 207, 225, 245, 261, 275, 279, 297, 315, 325, 333, 351, 363, 369, 375, 387, 405, 423, 425, 441, 459, 475, 477, 495, 507, 513, 525, 531, 539, 549, 567, 575, 585, 603, 605, 621, 637, 639, 657, 675, 693, 711, 725, 735, 747, 765, 775, 783, 801, 819, 825
OFFSET
1,1
COMMENTS
Odd numbers k such that A001222(k) > A001221(k) > 1.
LINKS
Michael De Vlieger, 2048 pixel square bitmap of n = 1..4194304, read left to right, top to bottom, showing odd A126706(n) in black.
FORMULA
a(n) = { A005408 INTERSECT A126706 } = intersection of A005418, A013929, and A024619.
MAPLE
filter:= proc(n) local F;
F:= ifactors(n)[2];
nops(F)>1 and max(F[.., 2]) > 1
end proc:
select(filter, [seq(i, i = 1 .. 1000, 2)]); # Robert Israel, Mar 01 2023
MATHEMATICA
Select[Range[1, 825, 2], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]
PROG
(PARI) isok(k) = (k%2) && !isprimepower(k) && !issquarefree(k); \\ Michel Marcus, Feb 28 2023
(Python)
from itertools import count, islice
from sympy import factorint
def A360769_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n: sum(f:=factorint(n).values()) > len(f) > 1, count(max(startvalue+(startvalue&1^1), 1), 2))
A360769_list = list(islice(A360769_gen(), 20)) # Chai Wah Wu, Mar 01 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Feb 28 2023
STATUS
approved